
GAME PROGRAMMING

IN C++:
START TO FINISH

Erik YuzwA

CHARLES RIVER MEDIA
Boston, Massachusetts

Copyright 2006 Career & Professional Group, a division of Thomson Learning Inc.
Published by Charles River Media, an imprint of Thomson Learning Inc.
All rights reserved.

No part of this publication may be reproduced in any way, stored inaretrieval system of any type, ortransmitted by any means or media, electronic or mechanical, including, but not limited to, photocopy,recording, or scanning, without prior permission in writing from the publisher.
Cover Design: Tyler Creative
CHARLES RIVER MEDIA
25 Thomson Place
Boston, Massachusetts 02210
617-757-7900
617-757-7969 (FAX)
crm.info@thomson.com
www.charlesriver.com

This book is printed on acid-free paper.
Erik Yuzwa. Game Programming in C++: Start to Finish
ISBN: 1-58450-432-3

All brand names and product names mentioned in this book are trademarks or service marks oftheirrespective companies. Any omission or misuse (of anykind) of service marks or trademarks should notbe regarded as intent to infringe on the property of others. The publisher recognizes and respectsallmarks used by companies, manufacturers, and developers as a means to distinguish their products.
Library of Congress Cataloging-in-Publication Data

Yuzwa, Erik.
Game programming in C++:start to finish / Erik Yuzwa.

p. cm.
Includes index.
ISBN 1-58450-432-3 (pbk. with cd : alk. paper)

1. Computer games—Programming. 2. C++ (Computer program language) I. Title.

QA76.76.C672Y98 2005
005.13’3—dc22

2005032754
Printed in the United States of America
06765432
CHARLES RIVER MEDIA titles are available for sitelicense or bulk purchase by institutions, user
groups, corporations, etc. For additional information, please contact the Special Sales Departmentat 800-347-7707.

Requests for replacement ofa defective CD-ROM must be accompanied by the original disc, yourmailing address, telephone number, date of purchase and purchase price. Please state the nature ofthe problem, and send the information to CHARLES RIVER MEDIA, 25 Thomson Place, Boston,Massachusetts 02210. CRM’s sole obligation to the purchaser is to replace the disc, based on defectivematerials or faulty workmanship, but not on the operation or functionality of the product.

Contents

Acknowledgments
Preface

1 Game Technologies -

Common License Agreements

Some Helpful Technologies

Concurrent Versioning System (CVS)

Using CVS

Creating the SuperAsteroidArena Project

Introduction to Doxygen

Introduction to InnoSetup
The Standard Template Library

std::string
std::vector

std::map

Chapter Exercises

Summary

2 Design Fundamentals
What Is a Game Design?

Classic Waterfall Software Design

Iterative Software Design

Principles of Agile Design

When to Use Agile
:

Introduction to the Unified Modeling Language

Basic Class Notation

XixX

OO

©

NN

Wo

14

16

23

23

24

25

27

27

29
29

30

31

32

33

33

34

vi Contents

Visibility Notation
Comment/Note Notation
Modeling Class Relationships
Generalization Relationship

Software Reusability
Code Reuse

Design Reuse

Anatomy of a Game
Initialization Phase
Process Phase

Destruction Phase
The SuperAsteroidArena Design Document

Drafting a Project Overview
What Type or Genre of Game Is It?
Who Is Your Audience?

Why Make the Game?
What Do You Want To See?

What Does It Offer?

Draft an Initial List of Timeboxes
Who Is Involved?

Budget Concerns
Demo versus Registered Features
Chapter Exercises

Summary

Introduction to SDL and Windows
Introduction to the Simple DirectMedia Layer

Why Use SDL Instead of DirectX?
SDL “Hello World”

Creating the EngineCore

Initializing SDL

The SDL/Windows Event Queue

35

35

36

37

38

38

38

44

44

45

46

46

46

47

48

49

49

49

50

51

51

52

53

53

55
55

56

56

60

61

62

Cleaning Up SDL

Big Endian versusLittle Endian

Adding the FileLogger

Using Windows Initialization Files

The Component Object Model

The 1unknown Object

Introduction to Dynamically Linked Libraries

Chapter Exercises

Summary

4 Introduction to the Peon Engine

Basic Engine Structure

Introduction to Peon

Introduction to Some Peon Components

Building Upon the Foundation

Managing State Information

Working on the First Timebox

Creating the New Instances of IApplicationState

Timebox Evaluation

Chapter Exercises

Summary

5 Graphics Programming Mathematics

The Cartesian Coordinate System

Fixed Function Geometry Pipeline

Introduction to Vectors

Common Vector Operations

Introduction to Matrices

The OpenGL Matrix Stacks

Identity Matrix

Matrix Addition and Subtraction

Contents

77
77

79

80

82

82

83

85

86

86

87

89
89

90

92

93

95

95

96

97

Contents

Matrix Multiplication 98
Coordinate Transformations 99
Scaling Transform 99
Translation Transform 99
Rotation Transform 100
Matrix Concatenation 102

Basic Camera/View Orientation 103
Projection Transformations 104
Create a Basic Camera 105
Gimbal Lock 106
Quaternions

:

107
Basic Quaternion Algorithm 108

Chapter Exercises 109
Summary 109

6 Creating an OpenGL Renderer 111
How Does OpenGL Operate? 112
OpenGL and Installable Client Drivers (ICDs) 112

Understanding the OpenGL Architecture 113
Defining the SceneRenderer 114
Loading the OpenGL Device Using SDL 116
Working with OpenGL Surfaces 118
Cathode Ray Tube Monitors and Phosphors 119

Clearing the Device 120
Flipping the Device 121

Unloading the Device 121

The OpenGL State Machine 122
Saving and Restoring State Information 122

Rendering Primitives 123
Rendering Vertices with the SceneRenderer 125

Contents ix

Texture Mapping 129

Creating an OpenGL Texture 129

Using the Texture Map 133

Using the SceneTexture 133

Rendering Text 135

OpenGL Display Lists 135

Storing the Font Characters 136

The SceneFont in Action 138

Printing Text 139

Cleaning Up 139

Rendering a Simple Cube 140

Moving the Cube 142

Rendering the Cube 142

Working with Fog 143

BasicFog Demo 144

Chapter Exercises 144

Summary 145

7 More OpenGL Techniques 147

Lighting and Materials 147

Defining Surface Normals 149

Adding Light Support to the SceneRende rer 150

Implementing Light Support in SceneRenderer 152

Sample Demonstration 154

Alpha-Blending and Transparencies 154

Sample Demonstration 155

Vertex Arrays 156

The OpenGL Extension Mechanism 158

Multitexturing 160

Contents

Working with the Texture Units 161
Chapter Exercises 162
Summary 163

8 Scene Geometry Management 165
The Depth Buffer 166
View Frustum Culling 166
Basic Scene Hierarchy Management 170
Sorting Rendering States 172
Animation Rendering 172

Introduction to the Peon Scene Graph 173
Scene Graph States 175
Scene Graph Passes 175
Scene Graph Traversal 176

Binary Space Partitioning Trees 176
Octree Data Structure 176

Building Your Octree 177
The Occluder Query 177
Occlusion Query Algorithm 179
Cleanup 180

Chapter Exercises 180
Summary 181

9 Graphics Timebox 183
Timebox Requirements 183
The LogoState 184
The MainMenustate 184

Loading Common Data 185
Rendering the Starfield 186

Rendering Text to the Player

Creating the Graphical User Interface

The ActiveState
Timebox Evaluation

Chapter Exercises

Summary

10 Working with Input Devices

Introduction to Input Using SDL

Using the Keyboard

Using the Mouse

Using the Joystick

Joystick Enumeration

Opening a Joystick

Processing Joystick Events

Cleaning up the Joystick

Adding Input Support to Peon

Chapter Exercises

Summary

Working With Sound

Sound Mechanics

Digitized Sound

Sound Layers
Introduction to SDL_Mixer

Working with Audio Music Data

Cleaning Up

Working with Audio Sound Effects Data

Sound Effect Playback
Cleaning Up

Contents

187

187

188

188

189

189

191

191

192

193

195

195

196

196

198

198

200

200

201

201

202

202

203

203

206

206

207

208

xii Contents

Introduction to OpenAL
Intializing the OpenAL Device Context
Loading Sound Effects

Working with the Source Object
Positioning the Listener Object
Playing the Sound

Stopping the Sound

Shutting Down the OpenAL Context
Playing Ogg-Vorbis Data with OpenAL

Playing the Ogg Buffer

Chapter Exercises

Summary

12 Input and Sound Timebox
Timebox Requirements
Required Input Events

Rotating the Player’s Ship
Activating the Player’s Engines

Using the AudioEngine

Loading Sounds

Playing Sounds

Unloading Sounds
Timebox Evaluation

Chapter Exercises

Summary

13 Collision Detection and Physics Techniques
Prioritize Speed

Axis-Aligned Bounding Box Detection

Bounding Sphere Collision Detection

208

209

209

210

212

213

213

213

214

216

216

217

219
219

220

221

222

223

224

225

225

226

226

226

227
227

228

230

Plane Collisions

Collision of Plane versus AABB

Ray Collisions

Collision of Plane versus Ray

Implementing Physics

Using the neSimulator

Working with Geometry

Running the Simulation with Tokamak

Rendering the Geometry

Cleaning Up

Chapter Exercises

Summary

Introduction to Networking

Networking Basics

Peer-to-Peer

Client-Server

TCP versus UDP

DirectPlay and Winsock

SDL_Net

Starting a Basic Server

Starting a Basic Client

Sending and Receiving Data

Non-Blocking Sockets

Using SDLNet_CheckSockets

TCP/IP versus UDP (Part II)

Network Address Translation
Client-Server Prediction/Authentication

Dead-Reckoning
:

Chapter Exercises

Summary

Contents xiii

232

232

233

234

235

237

238

238

239

240

240

241

241

242

243

244

245

246

247

250

253

254

254

259

260

261

261

261

262

xiv Contents

15 Networking Timebox 263
Introduction to ReplicaNet 263

Network Topology Design 264
Networking Timebox

;

264
Making Additions to Peon 265

Creating the NetStream Object 265
Working with Message Types 266

Updating Players 266
Session Hosting/Joining 267
Players Tend to Move Around 268
Players Want to Fire 268

Timebox Evaluation 268
Chapter Exercises 269
Summary 269

16 Introduction to Models 271
Model Generation 271
Updating the MeshFactory in Peon 272
Creating a 3DS Importer 273

Loading the 3DS Model Data : 276
Rendering the Model 277
Cleaning Up 279

Model Animation 279
The MD3 File Format 280

The AnimatedMeshFactory 284
Introduction to Collada 284
Chapter Exercises 285
Summary 285

17 Animation and Special Effects 287
Billboarding 287

Understanding the View Matrix (Recap) 288

Contents

Extracting the Vectors

Skyboxes (Environment Mapping)

Object Picking/Selection

Particle Systems

Updating the Emitter

Rendering the Emitter

Particle System II: Point Sprites

Billboard Animation

Loading New Frames

Updating Frames

Creating a Shockwave

Initializing the Shockwave

Updating the Shockwave

Rendering the Shockwave

Taking a Screen Shot

Chapter Exercises

Summary

18 Introduction to the OpenGL Shading Language (GLSL)

Some History of Shading Languages

Cg
The OpenGL Shading Language (GLSL)

The Vertex Processor

The Fragment Processor

GLSL Data Types
Shader Inputs and Outputs
Built-In Types

OpenGL Shading Language Syntax

Checking for Shader Support
Loading the Shader Source

Creating a Shader Program

The Shader InfoLog

XV

288

291

294

298

300

301

302

305

306

307

308

309

310

311

312

314

315

317
318

319

319

320

321

321

322

322

323

325

327

328

329

Xvi Contents

Uniform and Attribute Variables

Rendering with Shaders
Shader Object Cleanup

Shader Validation Using GLSLvalidate

Chapter Exercises

Summary

19 Introduction to Scripting
Introduction to Scripting
Introduction to Lua

Using the Interpreter
A Simple Script

A Simple Script File

Introducing Luac
Lua Stack

Calling a Lua Function
Using Luato Position Objects

. Updating the Object Position

Chapter Exercises

Summary

20 Polish Timebox
Timebox Goals

Adding Scripting Support
Adding Shader Support
Timebox Evaluation

Chapter Exercises

Summary

21 Finishing Tips and Tricks

Simple Suggestions
Game Play Testing

330

330

331

331

332

333

535
335

336

338

339

340

341

341

342

343

344

345

345

347
347

348

349

350

350

350

351

351

353

Contents

Installation Scripts

Using InnoSetup

Beta Testing or Quality Assurance Testing

User Instruction Manual

User Manual Checklist

Game Asset Compression/Encryption
Registration/Patch/Updating Mechanism

Final Things to Remember

Chapter Exercises

Summary

Appendix A Setting Up the SDL and the Compiler

Installing SDL

Microsoft Visual Studio 6.0

Microsoft Visual Studio .NET 2003

Microsoft Visual Studio .NET 2005 (Beta 2)

Appendix B Debugging Tools

OutputDebugString

Assert

gDEBugger
GLSL Validation Tool

Appendix C ASCII Table

Appendix D Windows Vista and OpenGL

Appendix E About the CD-ROM

Required Software

System Requirements
Installation

Author Support

354

354

356

357

358

359

359

360

361

361

363
363

363

364

364

365
365

366

366

367

369

371

375
374

374

374

374

xviii Contents

Appendix F Further Resources 375
License Specific 375
OpenGL Specific

:
375

SDL Specific 376
DirectX Specific 376
Audio Programming 376
Game Design 376
Network Programming 377
Scene Graphs 377
Agile Specific 377
Game Portal Sites 378

Index 379

Acknowledgments

pened without the help and assistance of many individuals. I really thank
Godfor blessing mylife thus far and presenting many wonderful oppor-

tunities for me to explore. Although I've taken many risks of my own through this

life, He’s been helping out on the other end to provide some light on my journey.
A special “I love you” to my beautiful wife, Eliza, and our two sons, Noah and

Isaac. Although I was able to get most of this book done after everyone went to bed,

there was still the occasional weekend that was eaten up with me attached to the

machine. Thanksto all of you who sacrificed our time together. To Noah, who in-

sisted on keeping me company on some nights by teaching me the mambo thanks

to his favorite show, Dora the Explorer, and to Isaac, who loves to stuff his face and
call everything “nana” (banana).

To my mom, dad, and sister who've put up with me all these years despite my
obvious obsessive need to play video games, combined with my ability to remem-
ber complete dialogue from every Doctor Who episode; yet I can’t remembera few

birthdays. I love you all and am blessed to have such a great family. I'm still shocked

that I was allowed to possess an Apple ITe machine in my room through my forma-

tive years. How blessed art thou, Ultima IV?

To Jenifer Niles, Lance Morganelli, Bryan Davidson and all the wonderful

people at Charles River Media/Thomson Delmar Learning: This book would not
have happened without your guidance, persistence, and the opportunity for us to

work together. Many heartfelt thanks!
To Scott Tidwell and Randi Rost over at 3Dlabs. You guys went above and

beyond the call of duty by helping me with my GLSL questions and providing me

with a loaner Realizm 100 video card for some testing. Many thanks for everything.

We to begin on something like this? This project would not have hap-

xix

Acknowledgments

To the wonderful developer support staff at ATI who have been readily avail-
able to help me pinpoint problems in my code and troubleshoot any driver related
issues I've had.

Another much appreciated “Thank You”to Avi Shapiro and the people overat
Graphic Remedy for answering me with my gDEBugger problems.

To Bernie Wieser and John Brimacombe, who have helped me with sections of
this material, along with continuing to open my eyesin thefield of game develop-
ment and software engineering in general. Somewhere along the way, you guys also
helped test some code. Thanks!

To Steve Ford who did a tremendous job on the music included in the Super-
AsteroidArena project and to Benjamin Wong who putin a lot of late nights putting
the artwork together. Thanks, guys, the check is in the mail. (No, really, I mean it.)

To Martin Piper forall ofhis support and help getting things running using the
ReplicaNet networking solution for this book.

Thanks to the developers who hang around the gamedev.net, indiegamer.com,
flipcode.com (R.I.P.), devmaster.net, and garagegames.com forums. Through the
years there have been so many golden posts on these boards, which have helped me
grind through code.

A final thanks goes to you, the reader. Game programming is not an easy field
or subject, even with the current level of software and hardware that we have at our
disposal. However, with this work comes many rewards. The reward of any com-
pleted gameis the first step on a greater journey.

Preface

elcome to the exciting world of game programming! This text was born

Wee a desire to help others educate themselves on some of the popular
techniques and practices behind creating games today. To some, the

magic behind moving an image across the screenis taken for granted when playing

a new game purchased on the Internet or at a store.
To others, however, moving their first visible object across the screenis a rite

of passage into a larger, more exciting world—a world that usually responds to

their every command providedit is formed correctly; a world that can cometo life

with dragons, space ships, submarines, and a host of infinite possibilities.
This book will help you pursue the knowledge behind making your computer

game fantasies a reality.

WHO SHOULD USE THIS BOOK

If you are already familiar with the C/C++ programming language and want to
enter the exciting world of game programming, then this book is for you. Overthe
course of this material, you will learn many interesting and exciting concepts be-

hind the magic of game creation on the PC. Not only will you add a lot of theory to

your game programming toolkit, you will also create a small basic game from

scratch; a fun and exciting game of Asteroids called SuperAsteroidArena.
While you will focus on using the SDL and the OpenGL libraries to learn game

programming, you can also apply the concepts and fundamentals presented here to
create just about any kind of game with any other language.

xxii Preface

BOOK HIERARCHY AND LAYOUT

This book is structured to enable you to learn about game programming and cre-
ation in a natural progression. Each chapter and subsection builds upon previous
chapters and topics, which will help you sort through the vast amount of material
available on game programming. The text is presented in a tutorial format that
allows you to progress at your own pace.

The following brief overview can help you chart your path through this book:

Chapter 1: Thisis an introduction into the world of game programming on
the PC. This chapter focuses on providing an overview of the existing tech-
nologies available to the game developer today.
Chapter 2: This chapter introduces you to some of the concepts behind the
design of a game.
Chapter 3: This chapter focuses on introducing you to some basic concepts
surrounding the popular SDL library and Windows programming in general.
Chapter 4: This chapter introduces you to some of the objects that you will be
developing throughout the rest of this book. You will make a small engine
known as Peon, which will contain some small but useful objectsfor nearly any
game you make.

Chapter 5: This chapter introduces you to some of the mathematics behind
working with 3D graphics.
Chapter 6: This chapter introduces you to the world of OpenGL, which is a
cross-platform graphics library.
Chapter 7: This chapter expands upon the OpenGL introduction provided in
Chapter 6.
Chapter 8: This chapter is an introduction to some of the popular methods
of organizing the objects in your game world. Scenegraphs, BSP trees, and
OctTree algorithms are discussed here.

Chapter 9: This chapter contains the graphics segmentofthe SuperAsteroidArena
project.

Chapter 10: This chapter focuses on introducing you to working with input
devices through SDL.

Chapter 11: This chapter introduces you to working with the popular SDL_Mixer library and OpenAL to load and playback some high-quality music and
sound effects for your games.

Preface XX

Chapter 12: This chapter focuses on the segment of the SuperAsteroidArena
project that deals with handling input and sound.

Chapter 13: This chapter focuses on introducing you to principles of collision
detection and physics.

Chapter 14: This chapter focuses on providing an introduction to basic net-
working principles and techniques with source code in SDL_Net.

Chapter 15: This chapter introduces you to the segment of the SuperAs-
teroidArena game which focuses on multiplayer communication.

Chapter 16: This chapter introduces you to using models created in an ex-

ternal modeling tool. It also demonstrates one way to handle a model anima-
tion format.

Chapter 17: This chapter focuses on providing an introduction to various

techniques you can use for special effects within your game.

Chapter 18: This chapter provides an introduction to the world of shader

programming provided by the OpenGL ARB in the GLSL specification.

Chapter 19: This chapter focuses on some ways of incorporating scripting

support into your application or engine using Lua.

Chapter 20: This last segment for the SuperAsteroidArena game focuses on
applying some final polish to the game.

Chapter 21: The final chapter of this book discusses other things to think
about when finishing your game and delivering it to your customers.

No matter how small a game is, the art and practice of creating that game involves

a rather large amount of work. For this reason, not every aspect ofgame prograrm-

ming or development is presented in these pages. Topics and items that are outside
the focus of this book are noted where possible.

PROGRAMMING STYLE

Although this book makes an assumption that you are somewhat versed in the

C/C++ language, the accompanying code for this material is meant to be as small
and clean as possible. Feel free to have your favorite C++ reference book and ma-
terial accompany you on the journey through the code for this book.

xxiv Preface

FURTHER SUPPORT

Although the source code presented throughout this book is available on the accom-

(_<» panying CD-ROM, updates naturally accompany any software. Please be sure to visit
ome either the publisher’s Website at http://www.charlesriver.com or the site devoted to this

book at http://book.wazooinc.com for updates.

Game Technologies

Chapter Goals

® Introduce and cover some of the popular license agreements.
m Discuss existing and useful game technologies that are currently

available for game developers.
® Introduce the Concurrent Versioning System (CVS).

Introduce creating HTML-friendly documentation with Doxygen.
® Discuss some helpful C++ components provided by the Standard

Template Library (STL).

exist and are worth discussing. Because some games might require a different
approach (in either the technical or design aspects), an in-depth evaluation of

the strengths and weaknesses of each is presented in this chapter so that you can
better minimize the risks involved in developing your game.

F- the beginner game developer, plenty of useful game technologies already

COMMON LICENSE AGREEMENTS

Some of the more common license arrangements are also worth mentioning; you
need to understand the limitations surrounding any technology you decide to use.
There tends to be a lot of misinformation about what a license means, even though
most agreements give you a lot of flexibility.

Game Programming in C++: Start to Finish

Lesser GNU public license: Most game development libraries are released
under the LGPL license, which allows you to use the software in any applica-
tion—commercial or otherwise. The only restriction is that if you modify any
of the source code of the LGPL’d software, you only need to make those par-
ticular modifications public. It is not necessary to release the source code for
the rest of your project. Software libraries such as the SDL and the Peon engine
used in this book are released under this license arrangement. You need to
make sure that the modified source code is publicly accessible, whether thisis
through a published link on your Web site, in public documentation (such as
a game manual), or on an FTP server.
GNU public license (GPL): Some software falls under this category. It is a
popular choice for some of the industry’s leading released source code (also
known as AAA), such as code from Id Software. GPL is similar in many ways
to LGPL in that you must include copyright notices with your project, and you
can charge money for projects created using GPL’d modules. However, any
project using GPL-protected software then automatically becomes a derivative
project and is bound by the GPL terms and conditions. In other words, if you
create a game using the Quake2 or Quake3 code released by Id Software under
the GPL, then you are allowed to charge money forit but must make the source
code to your project publicly accessible.
The BSD license: Some projects are also released under this license, which
allows you to do just about whatever you want with the software. The only
restriction is that you keep the original licensing copyright notice with your dis-
tribution, and you cannot use the original creator of the software to endorse
your project without express written consent. Apart from those restrictions,
you can modify the source code any way you want.
Creative Commons license: A rising star among open source licenses is the
Creative Commons license. As more game assets are created and released to the
Internet, such as a texture set created by one artist, some background music
created by another, and maybe a collection of 3D Studio Max models, the com-
mon GPL or LGPL structures do not always make sense for their creations. As
such, the Creative Commons license was developedfor these types of terms and
conditions. The official site is listed in Appendix F, butit brings you to a Web
page that is in the form ofa License Wizard. Using this wizard, you can walk
through a series of questions pertaining to how exactly you want to protect
your work. When it is finished, the wizard will produce the terms and condi-
tions in the form of legalese that you can distribute with your project or adver-
tise on your Web site.

Game Technologies 3

In standard practice with your own library or project,it is usually a good idea
to cut and paste your copyright into every header file in your project. At the very
least, you should have some kind ofa text file that you distribute with your project
that clearly outlines with what type of license you are releasing your project. Most
projects have an accompanying README or COPYING textfile explaining the li-

cense in the root folder of the project.

SOME HELPFUL TECHNOLOGIES

On the Internet today are many entertainment or multimedia-related projects, and
you should become familiar with some ofthe popular choices for game program-
ming on the Windows platform.

The following engines or technologies are ranked in alphabetical order, not by any
special preference. Do not forget to thoroughly understand the license agreements
surrounding each package or toolkit before going forward with your project.

Blitz3D/Max: Mark Sibly launched the Blitz3D game engine kit in 2000. This
kit is used by some programmers for their success. The engine comes with an
editor that allows you to work with scripting code in order to interface with the
Blitz engine. Although the scripting languageis called BlitzBasic and looks sim-
ilar to the old QBasic syntax, it provides a powerful interface to the underlying
engine, which will run on any Windows system supporting DirectX7 or higher.
As of this writing, an updated cross-platform version of Blitz3D (called Blitz-
Max) has been released; this version is now capable of supporting both the
MacOS and Win32 platforms.It offers an improved code base overits prede-
cessor, and the rendering engine has been altered to support OpenGL in order
to function in the cross-platform environment. Although larger projects can
sometimes be difficult to manage with the Blitz IDE, this family of develop-
ment software does target the beginner game developer with little-to-no skill in
graphics programming. There also is a very large and supportive community
from which you can draw experience should you encounter any difficulties
creating your game.
DirectX: With their DirectX software development kit, Microsoft has been
involved with games programming on Windows virtually since the release of
Windows 95. The goal of DirectX was to unify the interface design ofinput,
sound, and graphics devices, in order to push the onus of device driver certifi-
cation on the hardware vendor. As long as the hardware is DirectX certified,
then it should function with any DirectX application. Now on version 9.0c of

Game Programming in C++: Start to Finish

the SDK, DirectX is slowly migrating itself in preparation for the upcoming re-
lease of Windows Vista.It is still a popular development platform for Windows
game programmers; however, it is now only supporting the Windows XP fam-
ily of products. Microsoft has also recently announced the XNA initiative,
which is an attemptto lessen the gap between game developers and the gaming
audience for whom they are developing. Although the XNA Studio product (or
family of products) is not due to ship until 2006, Microsoft is pledging that
XNA offers a better way to make game developmenta faster process.
FMOD: A cross-platform audio library, FMOD has secured a strong foothold
within the game development community by providing a fast and easy inter-
face to your audioeffects and music. Started in 1992 by Brett Paterson, FMOD
began life as a Gravis Ultrasound mod player for DOS. Ten years and many re-
visions later, Brett has continued on with FMOD under the newly created com-
pany of Firelight Technologies. His team has since added support for the PS2,
PSP, PS3, Xbox, and Xbox360 consoles. The license cost has a simple and fair
scaling algorithm to provide FMOD for any project, from the small hobby or
shareware title up to an AAA commercial venture such as Blizzard’s World of
Warcraft.
OGRE: Initially starting this project in late 2001, Steve Streeting wanted to
create a cross-platform, scene-structured, and graphics-independent rendering
engine that was labeled the Object-Oriented Graphics Rendering Engine (OGRE).
Throughout the years in development, it has matured to quite an amazing ren-
dering package/suite for your own graphics needs. It has multiple rendering
capabilities supporting the Direct3D7, OpenGL, or the latest Direct3D9 inter-
faces. Among other features, it includes a way of presenting GUI controls, scene
management organization, and some handy importers for using modeling data
from some popular modeling packages. The OGRE team and surrounding
community is friendly and ready to give some direction for any issues or con-
cerns about using OGREin your project.
OpenAL: Beginning in roughly 1998 as an open source audio library alterna-
tive to the DirectSound3D API established by Microsoft, the OpenAL library
was envisioned as a cross-platform 3D audio library for any project, both com-
mercial and hobby. The library or specification did not really begin to mature
until Loki Software and Creative Labs teamed together to expand the interfaces
in 2000. The OpenAL engine has driven quite a few successful game titles such
as Jedi Knight by Lucasarts, the U.S. Army’s America’s Army, Epic’s Unreal Tour-
nament 2003/2004 series, Marble Blast developed by GarageGames, and a host of
others. OpenAL hasa nice, clean interface that provides the developer with an
easy-to-implement audio solution to their project, with the added benefit of a

Game Technologies 5

software mixer to fall back on. The design ofthe library is similar in nature to the
OpenGL specification in regard to how audio properties are assigned to an ob-
ject, as well as an extension mechanism to support updates to the OpenAL spec-
ification. You will learn more about using OpenAL in Chapter 12, “Input and
Sound Timebox.”

Popcap framework: One of the most successful publishing companies for
shareware games is the Popcap game online portal, which launched in 2000.
They have published a long list of successful titles through the years and are
now contributing back to the small-time game developer with the release of
their toolkit, which is used in most of their developed products. Popcap was
among thefirst online publishing companies that have specialized in making
small, but addictive, titles such as Bookworm, Bejeweled, and Zuma. The frame-
work is a kick start to creating small, but exciting games on the Windows plat-
form. It is not meant for any 3D graphics, however, as it focuses on providing
a strong software sprite library.
RakNet: The most common hurdle in any multiplayer project is properly
dealing with networking sockets. The DirectPlay networking middleware
component of the DirectX SDK was available free of charge, but it was only
available on Windows. Other developers also did not like the way it was imple-
mented. One such developer, Kevin Jenkins, decided to create the RakNet
cross-platform library in 2001 based on a reliable-UDP packet delivery method,
which is a popular protocol of choice for fast network and Internet gaming.
RakNetis released under the LGPL and is a popular networking middleware
component.
ReplicaNet: In late October 2000, while working for (the now defunct) Arg-
onaut Games, Martin Piper was charged with writing a multiplayer Jet Ski
demo for the Xbox platform. Instead oftaking the typical network coding ap-
proach, Martin opted for a solution that involved creating a virtual database,
which maintained itself across each node in the network. With much research
into distributed technologies such as CORBA, DIVE, NPSNET and VIRTUS,
Martin crafted a solution that described the data used by the game entities in
such a way that the game logic would not need to concern itself with serializa-
tion. The database copy on each node would manage and replicate itself across
every node when necessary. ReplicaNet is a cross-platform library, capable of
running on Windows, Linux, and some game consoles. Martin has graciously
offered the freeware license of ReplicaNet for use for this book. It is discussed
in further detail in Chapter 15, “Networking Timebox.”

Quake2 and Quake3: Although these game(s) are several years old, John
Carmack and the rest of Id Software have been more than generous in making

Game Programming in C++: Start to Finish

the source code available under the GPL. This code can help point you in the
right direction on a wide variety of common game programming issues, such
as networking or graphics-related problems. Being among the first companies
to release any source code to an actual AAA-quality game, Id Software has al-
ways been generous in helping the struggling developer.
SDL: While working at the now defunct Loki Software, Sam Lantinga created
and launched a cross-platform toolkit in 1997 known as Simple DirectMedia
Layer (SDL). Released under the LGPL, the SDL providesa thin interface to the
underlying video, sound, and input components across each platform, which
allows you to focus more on developing higher level game logic rather than
worrying about creating windows, initializing input hardware, or other low-
level device tasks. With the ability to integrate itself quite seamlessly with
OpenGL, it is another popular choice among beginner programmers and in-
dependent game professionals alike, and it is the library with which you will be
making a simple engine throughout the rest of this book.
Torque: Jeff Tunnell and Rick Overman, along with a few others from the
game company Dynamix, decided that they wanted to go into business for them-
selves after leaving Sierra. They created their own publishing company called
GarageGames, which was launched in 2000. GarageGames is an independent
(indie) friendly publishing house that is becoming a popular gateway for game
development. They offera license to their proprietary game engine, Torque, for
use for your own projects. Torque is a huge, impressive, cross-platform game
engine that has not only powered the Tribes2 game, butis also behind several
successful projects such as MarbleBlast and Orbz. Althougha license fee provides
you with the source code to the mature and commercially proven engine itself,
chances are high that you will not need to modify it. Instead, your game interfaces
with the engine via TorqueScript, a scripting language similar in nature to
JavaScript, to leverage the power and flexibility of the engine. Although there is a
bit of a learning curve, the sheer amount of useful resources available on the
Web site and through the Torque community can help you through the initial
hurdles. Since the Torque engine hides a lot of the lower-level programming
from you,it generally takes some tinkering with the engine in order to under-
stand the relationship between the scripts you create and how they interact with
the underlying components.

As you can see, there are a large number of engines and game toolkit technolo-
gies available to help complete the difficult task of designing and implementing a
game. Although they are all excellent resources, some require more programming

Game Technologies 7

knowledge than others. Although some packages are more productive in the long
run, they might have a much higher learning curve in the beginning, which can
cause unexpected delays to the project. However, there are enough game resources
available to satisfy the needs of anyone at any skill level and using just about any
programming language.

Before you plunge into the world of game programming, you need to have some
tools handyfor creating your adventures. Throughout the remainder of this chapter,
you will learn about some important tools that can apply to not only your own game
development, but also to just about any software project upon which you embark.

Concurrent Versioning System (CVS)

“Time is money” is a common business mantra, and now more than ever compa-
nies are trying to cut down their expense overhead to improve their shareholder
ranking and profit margins. As in regular software development, game develop-
ment houses usually have very little room for error. The code developed by the
team becomes part of the lifeblood of the company. To lose the code would have a
catastrophic impact on the project and in a worst-case scenerio could even sink the
company itself. Although having a regular software backup schedule is essential to
keeping a physical history ofthe project, version controlis also of primary impor-
tanceas it allows you or any team member to view the history of the code base you
are all developing. Since a team of developers, scripters, documentation writers,
and so on, are all involved in the project, the code base can be a constantly shifting
entity that can change hourly. As you might imagine, not having a working snap-
shot of the latest code base can cause problems and unneccessary delays. Without
the ability to view a history ofthe resources involved, you might experience un-
neccessary delays and frustration if you and your team are trying to track down any
bugs that have suddenly appeared in your game.

Anything can be dumped into a version control system, from the artwork created
by the artists, the code of your game, the sound and music effects created by the
sound engineers, and even the HTML code that contains the Web site for your
product.

One of the most popular version control systemsis the Concurrent Versioning
System (CVS). Originally created for the Unix platform, CVS has gained world-
wide popularity as the version control system of choice. For the purposes of this
book, you will be using a Windows flavor of CVS, called CVSNT.

Game Programming in C++: Start to Finish

Installing CVSNT

5 Browse to the /tools_install folder included on the CD-ROM and launch the CVSNT
setup binary. You do not need to change any ofthe default settings with the installa-
tion, so just allow it to install. When the installation is completed,it will be necessary
for a machine reboot.

When finished, you can now create your own code repository. Go into the
system control panel and launch the CVSNT control panel applet, denoted by the
green fish (see Figure 1.1).

& ~utomatic Updates Set up Windows to automatically del
{£39 CWS For NT Configure the CVS NT Service

“Date and Fine Set the date, time, and time zone fo

€3 Direct Chanaes properties for Directs

FIGURE 1.1 CVSNT applet.

You are now presented with the main CVSNT panel. Click on both ofthe Stop
buttons to stop the CVS services. In a File Explorer window, create a folder on the
working drive to house a repository as shown in Figure 1.2.

[Chics _repository File Folder 3/12/2005 6:08 AM

CDcvs_temp 3 File Folder 3/12/2005 6:07 AM

FIGURE 1.2 Local repository folder.

In the Repositories tab, click the Add button to create a new repository. In the
Location field, be sureto select the cvs_repository that you created previously. Then
enter the name /projects in the Name field. This name is your key to accessing
your repository, as shown in Figure 1.3 so do not forgetit .

A message dialog box should appear inquiring whether you wantto initialize
the folder. Press Yes. Select OK, go back to the main tab, and start up the services
again using the Start buttons. Thatis all you need to create a CVS repository server
that houses your project.

Game Technologies 9

: |/proiects

FIGURE 1.3 Name the repository.

Using CVS

ON THE CD

Now that you have your central repository server created, it is time to learn how to
use it for development purposes. Although you can use the command line to inter-

act with the CVSNT server, itis easier for beginners to use a tool with a graphical
user interface. For this book, you are using the TortoiseCVS Windows Explorer
shell interface to work with CVSNT.

Available on the accompanying CD-ROM in the /tools_install folder, the Tor-
toiseCVS GUI hooks itself right into the Windows Explorer shell menus, making it
much easier to interact with your CVS repository. In practice, you only need to re-
member a few important concepts regarding a repository system: how to work with

a module (that is, checkout), how to update files, and how to put them back into
the repository (thatis, checkin).

CREATING THE SUPERASTEROIDARENA PROJECT

Now you will begin preparation for creating the SuperAsteroidArena game. First,

you will create a new project within the repository system that you have just fin-
ished installing. Create a new blank folder called c:\cvs_working_folder. Within this
folder, create another folder called SuperAsteroidArena. Right-click on this folder
and select the Make New Module of the CVS menu option (see Figure 1.4).

You next need to fill out some important information to define the project
properly within the repository. You might wantto read up on implementing secu-
rity on your repository; for now there is none. The fields should be filled outas they

appearin Figure 1.5.

10 Game Programming in C++: Start to Finish

NattaPVT
Open
Explore
Browse with WinCvs

Search...
Add to Winamp's Bookmark list
Enqueue in Winamp

Play in Winamp

Convert to file format...

older 3/12/2005

Scan for Viruses...

Send To

Cut

FIGURE 1.4 Make New CVS module.

TortoiseCVS

Module Option

- Make New Module

Sharing and Security...
@& Snaglt »

W CVS Checkout...

wt Module.

iQ WinZip »| & Checkout TortoiseCYs
& Checkout wxWidgets

Wf Preferences...
D Help...

Ww About...

CVSROOT: :sspiclocalhost: projects

Protocol: | Windows authentication (:sspi:)

Protocol parameters:

Server. localhost

Port:

Repository folder: projects

User name:

Module: E uperasteroidirena

FIGURE 1.5 CVS project definition.

Bl

(_Fetchist. J |

Game Technologies 11

When finished, select OK, and you should see a results window informing you
whether the creation was successful or not. You should see a message similar to Fig-

ure 1.6.

Finished make new module in C:\cvs_working fold

[in C\DOCLIME ~T\ADMINI~T\LOCALS ~15T empT ortaiseCV's make new module

tempt: "C:\Program Filesh\T ortoiseCYShcvs. exe’ "-g" "x" "import" me
1"Superdsterniddrena’ "tove-vendor "tovs-release”

CYSROOT=sspilocalhost: projects

Mo conflicts created by this import

Success, CVS operation completed

in C:hevs_working_folder: "C:\Program FileshTortoiseCWShovs. exe” qn
"checkout "-d" "Sugerdsteroidirena’ "Superdsteroidérena”
CYSROOT=sspilocalhost /projects

Success, CYS operation completed

Tortoise Tip: The top-level folder has now been created in CVS.

To add files and subfolders, invoke the CVS Add Contents command.

FIGURE 1.6 Project creation status.

Working with Files

Although there is no source code to play with just yet, you can practice using CVS

by working with a simple text document.
Within the SuperAsteroidArena folder, create a new text file todo.txt and open

it with Notepad. Type some text such as Create game here and save/close the file.

You should notice that in Windows Explorer, the file now has a blue question mark
icon on it. This signals that it is a file that does not yet exist within the repository as

shown in Figure 1.7.

12 Game Programming in C++: Start to Finish

ECs
FIGURE 1.7 Unexisting file in the project.

You can fix that by right-clicking on the file and selecting the CVS Add.. . . op-
tion seen in Figure 1.8.

FIGURE 1.8 CVS Add dialog.

Select OK on the dialog box that pops up, and then CVS will try to add this new
file into your project in the repository. The operation should result in a success mes-
sage, and thefile should now have a new icon on it. This is a visual cue that it has
been added, but not committed to the repository, as demonstrated in Figure 1.9.

LCYs|{fH todo txt

FIGURE 1.9 File added to repository.

To fix this, simply right-click the file again and select the CVS Commit menu
option visible in Figure 1.10.

Game Technologies 13

(ul yyy

FIGURE 1.10 Commit file.

Select OK, and you should see another success message generated by CVS.

Note by default that when an objectis added to the repository,it is automatically
assigned a version number of 1.0 by CVS.

Checking Out Objects

To demonstrate the process of checking out a project/file, moveto a different folder
on your computer. Right-click somewhere in the File Explorer window and select
the CVS Checkout menu option. The CVS settings should remain the same, so you
should be fine just selecting the OK button. CVS will do some work, and you
should end up with a results window like Figure 1.11.

*“ FinishedlsCLES
Hin Chews workingfolders a C:\Program Files\T pr——— wpeene -q

;

-X
2)

checkout -P Superdsteroidirena

| CYSRDOT=sspilocalhost. /projects

i U Superdsteroiddrenastado.tet

o Success, CVS operation completed

1

FIGURE 1.11 Status of checkout.

14 Game Programming in C++: Start to Finish

Now that you have got the todo.txtfile to work with again, update it with some
other text. Again, type whatever you want and save/close the file. It should now be
a different color (red), which again isa visual cue that the file was modified.If you
use the CVS Commit dialog as outlined previously, CVS will update the version
that you have in the repository with this new one. Notice again the updated version
numbers shown in Figure 1.12.

*“ Finished commit - TortoiseC

n C:hevs_working_folderstesthSuperdsteraidérena: C:\Program Files\T ortoizeCy'S
Cvs. exe -q -% commit -m todo. txt
CWSROOT=sspilocalhost: ‘projects

hecking in todo. txt;
projects/Superdsteroiddrenattodatst,y <- todo. txt
ew revision: 1.2; previous revision: 1.1
one

uccess, CVS operation completed

FIGURE 1.12 Commit status.

Introduction to Doxygen

ON THE CD

If you have team members touching the same modules often enough,or evenifyou
are the lone developer, any code can get complex and unreadable. Documentation
becomes criticalas the developer should understand what each module is attempt-
ing to actually do. Not only that, but sometimes it is necessary to update code that
has not been touched in a long time, and you probably will not remember the rea-

; sons behind why you implemented the code the way you did. Available on the CD-
ROM in the /tools_install folder, Doxygen is a powerful and handy tool that
generates Web page-friendly documents from the commented source code that
provides an overview to the project. Listing 1.1 demonstrates a sample class header
file with Doxygen-friendly commenting, available on the CD-ROM in /chapter_
source/chapter_01/HealthObj.h.

Game Technologies 15

LISTING 1.1 Sample Doxygen-Friendly Class Definition

/*!
*

*

*

*

*

*

£

\brief This object modifies an entity’s hit points

The purpose of this object is to hang around in your game world

until the Player picks it up. Depending upon how much health
points the instance of this object is worth, it is added or
subtracted to the player's overall health score

class HealthObj : public ObjA
{

public:
1%
* constructor
*/
HealthObj();

/*!
* destructor
*/
virtual ~HealthObj();

}s

//comment blocks can also begin with...
[ne
* This method places our object in the game world along
* with assigning it a health value
* @param x - Xx position
* @param y - y position
* @param z - z position
* @param h - health
* @return true or false if this object was allowed
wl

bool setPosition(float x, float y, float z, int h);

//snip!

The Doxygen tool comes with a nice and friendly graphical user interface to help

you choose which options you would like to incorporate into the generation ofthe
documentation. For example, you can specify your own cascading stylesheet (.css)

files for the header and footer area of the document. After installing the utility, to
launch the Doxygen tool you need to execute the Doxywizard menu item from your
Start menu. You will be presented with a main dialog as shown in Figure 1.13.

16 Game Programming in C++: Start to Finish

File Help ONPg

#3 Doxygen GUI frontend

Step 1: Configure doxygen

Choose one of the following ways to configure doxygen

J. Ewes im |
Step 2: Save the configuration file

Save... | Status: not saved

Step 3: Specify the directory from which ta un doxygen

Working directory: | :

Select...

Step4: Run dovygen

Start | stetus not running . Save log... |

Output produced by dowygen

FIGURE 1.13 Doxywizard.

The use of the Wizard button will guide you through the basics of creating a
Doxygen-compatible configuration file. When it is time to generate the HTML-

friendly documentation, you launch Doxygen by pressing the Start button.
Within the specified target folder, if you then launch the html\index.html file

in your browser, you will see the Healthobj object created from the Doxygen tool.
For further examples of using Doxygen in a real world situation, be sure to in-

<<. , spect the documentation or the source code files that accompany the SuperAs-
ovmeco teroidArena or the Peon project contained on the accompanying CD-ROM.

Introduction to InnoSetup
The very first thing a potential customer will see before playing or buying your
product is usually one of the final tasks the game developer tackles during the life-
time of the project. The goalofthe installation procedure is to make the process of
installing your game as painless as possible for the player.

Game Technologies 17

There are many friendly installer tools on the market, but one of the easier

systemsto use is InnoSetup. It can handle simple installation requirements such as

file copying and registry key creation, along with providing an easy uninstall pro-
wmew cedure. It is also available on the CD-ROM in the /tools_install folder.

Remember who your target player is when creating the installation procedure,
as some players might have no idea what kindof system they are running, or which
version of DirectX or OpenGL video driversare installed. With this in mind, keep
the language simple by not using a lot of technical jargon during the process.

Re-running an installation procedure of an existing successful product is a good
startto perfecting your own installation appearance. In order to maintain an at-

VOTE mosphere of “positive transfer” among other applications that the player is accus-
tomed to installing, try to use the same installation language that other well-known

products use.

The documentation provided with InnoSetup is incredibly detailed and makes
it very easy to accomplish the basic necessities of an installer package. Listing 1.2 de-
tails a sample InnoSetup script used to install some files and create an icon.

LISTING 1.2 InnoSetup Sample Script Taken from the InnoSetup Examples

; — Examplel.iss —

; Demonstrates copying 3 files and creating an icon.

; SEE THE DOCUMENTATION FOR DETAILS ON CREATING .ISS SCRIPT FILES!

[Setup]
AppName=My Program
AppVerName=My Program version 1.5
DefaultDirName={pf}\My Program

DefaultGroupName=My Program
UninstallDisplayIcon={app}\MyProg.exe

Compression=1zma
SolidCompression=yes

[Files]
Source: "MyProg.exe"; DestDir: "{app}"
Source: "MyProg.hlp"; DestDir: "{app}"
Source: "Readme.txt"; DestDir: "{app}"; Flags: isreadme

[Icons]
Name: "{group}\My Program"; Filename: "{app}\MyProg.exe"

Game Programming in C++: Start to Finish

After installing the InnoSetup application, you will need to launch the In-
noSetup Compiler option from the Start menu. You will be presented with a Wel-
come Wizard dialog as shown in Figure 1.14.

Welcome Ed
New filg —————————— :

Ld O Create a iy emplyscript fle
© Create a new script fle using the Script Wizard

@OfeiieteErr ro
|

More files...

| C:\Program Files\lnno Setup SAE xamplesh\Example] iss
C:\Program Files\Inno Setup SAE xamplestUninstallCodeE xample

[Dont show ths dialog again ~~ [yy

FIGURE 1.14 InnoSetup Compiler.

You have the choice ofeither starting with a blank compilation script or using
the wizard to automatically generate your own.

For the purposes of the SuperAsteroidArena project, you will run through a
quick setup here.

Start by selecting the option to use the wizard to generate your own setup script.
Enter the application information relevant to the project as shown in Figure 1.15.

The entry fields are self explanatory. For the version number field, feel free to
start off with a small numbersuch as 0.1 and gradually increase it with each release
of your game. The standard practice is to mark the version you present to the pub-
lic as the 1.0 version.

After pressing the Next button, you will be presented with the Next dialog as
shown in Figure 1.16.

Game Technologies

TERE] RTsVAL
Application Information

Please specify some basic information about your application.

Application name:

[SuperhstercidArena |
Application name including version:

| SuperdstercidArena 1.0 -]

Application publisher.
[Wazoo Enterprises Inc. |

Application website: . :|itp: #/book. wazoine. cor

bold = required : . L < Back I Next > 1. r— |

FIGURE 1.15 SuperAsteroidArena application information.

OTETTaAP
Application Directory

Please specify directory information about your application.

Application destination base directory:

| Program Files directory

Application directory name:

|Supersteroidbrena
:

|

[|v]

Allow user to change the application directory

Other:

[] The application doesn't need a directory

bold = equied Es Back I Next > 1 [Cancel J

FIGURE 1.16 SuperAsteroidArena application directory.

20 Game Programming in C++: Start to Finish

Most of the retail games today choose to install their game within the c¢:\pro-
gram Files folder structure. You can either choose this as the default location or
allow the player to select their own. After moving to the Next dialog, you can spec-
ify where the application binary is located within yourfolder structure. This is
demonstrated in Figure 1.17.

Inno Setup Script Wizard

Application Files
Please specify the files that are part of your application.

Application main executable file:

| C:\Program Files\SuperAsteroidArena\ArenaMain.exe L Browse... |
[J Allow userto start the application after Setup has finished

Other application files:

Add file(s)...

Add directory...

bold = required a a l <Back I New] { Cancel 4
FIGURE 1.17 SuperAsteroidArena application files.

The next phase of the installation generation wizardis to specify which icons
are created for your application and where they will reside. Figure 1.18 details the
available options.

As you can see, you have the ability to create an icon for your application on the
Quick Launch toolbar along with one on the desktop. You can also choose whether
you want everyone on this machine to have your game created in their respective
Start menu folders.

The next dialog page in the Install Generation wizard contains the all-impor-
tant information regarding the license of your game. Thisis an important step as
you are detailing what kind of permissionsthe player has with your software. This
is detailed in Figure 1.19.

Game Technologies 21

Inno Setup Script Wizard

Application Icons
Please specify which icons should be created for your application.

Application Start Menu folder name:
5S uperdaternidiiend

[#]

Allow user to change the Start Menu folder name

[7] Allow user to disable Start Menu folder creation

[Create an Intemet shortcut in the Start Menu folder

[1 Create an Urinstall icon in the Start M enu folder

Other: !

Allow user to create a desktop icon. NSiAllow user to create a Quick Launchicon

Cold 1 Back: I Next> | [Cancel |
FIGURE 1.18 SuperAsteroidArena icon configuration.

Ifyou are specifying a license file for use with a game you are trying to sell, consider

putting your company’s return policy in this license file. Detail explicitly the terms
and conditions under which you may (or may not) refund the customer.

Thefinal input dialog that you have available in InnoSetup is to specify any ad-

ditional compiler settings. Figure 1.20 provides a screenshot of this Compiler Set-

tings dialog.
When you are satisfied with your input decisions, the InnoSetup compiler will

then generate the installation script for you. The compiler will then ask whether

you wantto create this new installation binary.
To see a real-world InnoSetup script in action, be sure to inspect the

/SuperAsteroidArena/ArenaMain/installer.iss file contained within the Super-

~~, AsteroidArena project on the CD-ROM. You will also learn more about installation

wo tips in Chapter 21, “Finishing Tips and Tricks.”

22 Game Programming in C++: Start to Finish

Inno Setup Script Wizard

Application Documentation
Please specify which documentation files should be shown by Setup during
installation.

License file:

|e\SuperdsteroidArenalicense. tf | (Browse...]

Information file shawn before installation:

7] { Browse... u
Information file shown after installation:

| a | Browse.]

l <BackJ[Next> | [Cancel id

FIGURE 1.19 SuperAsteroidArena application documentation.

Inno Setup Script Wizard

Compiler Settings
Please specify some basic compiler settings.

Custom compiler destination base directary:

l | (Browse...|Compiler destination base name:

setup J

Custom Setup icon file:

| Browse... |Setup password:

[L < Back I Next> | { Cancel |

FIGURE 1.20 SuperAsteroidArena compiler settings.

Game Technologies 23

THE STANDARD TEMPLATE LIBRARY

The STL programming library is another important and valuable tool that will save

you a lot of time and troubleshooting. Despite the underground rumors that seem

to persist in questioning the use of an STL within a game (or any other high-per-
formance application), the fact of the matter is that the STL was originally created

and optimized for speed. It is used on many past and present game projects on

Windows, MacOS, and even someof the consoles. The STL is built around the con-

cept of containers. In other words, the majority of the classes developed within the

library are fast and efficient objects to store other objects. The three most com-

monly used containers from the STL that game programmers typically use are the

vector, String and Map container objects.

std::string
The STL string container represents an optimized safe array of characters that pro-
vides you with an easy-to-use container for storing string data. When working with

char arrays, there is always a small chance that you might try to access an element

in the array that is out of bounds. You might also come across problems with using

strcat or strcpy to copy one large character array into a slightly smaller one. To

handle these cases, you normally need to create blocks oftests to ensure that the

string operations completed successfully. Instead, the STL string container gives

you some easy ways of manipulating string data, without worrying about illegal op-
erations such as those mentioned previously. Listing 1.3 demonstrates a simple

sample.

LISTING 1.3 An std::string Example

//specify that you want to use objects defined in the
//std namespace.
using namespace std;

int main(int argc, char* argv[])
{

//define a string object..can also be defined as std::string
string text_string;

//instead of strcpy we can use the = operator
text_string = "Hello World";

//instead of strcat we can use += operator
text_string += " I am a std::string";

24 Game Programming in C++: Start to Finish

std::vector

Another popular container of choice for the game programmer is the STL vectorobject, which can be used as a dynamic array for any object you want to store. As
with the std: : string container, the vector container is one way of avoiding out of
bounds errors. As elements are inserted into the container,
that there is enough room for the new element. If there is not, then it will create alarge enough space for the new object. Listin

//when needing a pointer to the character string buffer
//always use the .c_str() method
cerr << text_string.c_str() << endl;

return 0;

power of the STL vector.

LISTING 1.4 An std: :vector Example

//specify that you want to use objects in the std namespace
using namespace std;

int main(int argc, char* argvl[])

//define a vector container to store integers
//can also be defined as std::vector
vector<int> oVecInteger;

oVecInteger.push_back(9);
oVecInteger.push_back(6 5

//an iterator is an STL object used to enumerate or
//process the contents of a container
for(vector<int>::iterator it = oVecInteger.begin();it != oVecInteger.end(); it++)
{

//it is a pointer to the element in the iterator,//so *it dereferences it so we can get the value
cout << "displaying value: " << *jit << endl;

}

the vector first ensures

g 1.4 gives you a small sample of the

Game Technologies 25

return 0;

std::map

The last STL container object you will learn about here is the STL map container,
which creates and stores objects in a key value-pair format. This object is especially
useful when you need to quickly reference a collection of game objects. Listing 1.5

provides a sample of using STL map.

LISTING 1.5 An std: :map Sample

//to demonstrate how simple it is to store objects in a map

//container, define a simple monster object
struct sMonster
{

std::string monster_name;
int monster_health;

}s

int THAL_KEY = 1;

int KALED_KEY = 2;

//specify that you want to use objects from the std namespace

using namespace std;

int main(int argc, char* argv[])
{

map<int, sMonster*> oMonsters;
sMonster* moni = new sMonster();
sMonster* mon2 = new sMonster();

//set some basic properties for the monsters
mon1i->monster_name = "Thal";
moni->monster_health = 100;
mon2->monster_name = "Kaled";
mon2->monster_health = 50;

//insert them into the map container using a key

//value that we can use to find them later
oMonsters.insert (make pair (THAL_KEY, mont));

26 Game Programming in C++: Start to Finish

//the following assignment is also legal
oMonsters[KALED_KEY] = mon2;

//we want to find the Thal monster so we need an
//iterator object to enumerate the map elements
map<ing, sMonster*>::iterator iter;
//find the element matching the key value
iter = oMonsters.find(THAL_KEY);
if (iter == oMonsters.end())
{

//can’t find it!
cerr << "The Thal has been exterminated!" << endl;

telse
{

cerr << "The Thal has " << iter->second->monster_health
<< " health left. " << endl;

//clean up. Note that since you are storing pointers to sMonster
//objects which are allocated on the memory heap, you need
//to clean up and deallocate this memory before calling the
//clear() method of the container.

sMonster* pObj;
for(map<int, sMonster*>::iterator it = oMonsters.begin();

it I= oMonsters.end(); it++)
{

delete it->second;
it->second = NULL;

}

}

//clear the map of the sMonster pointers
oMonsters.clear();

return 0;

: Game Technologies 27

Ifyou are considering using STL with a version of Visual Studio earlier than NET
2003, then be sure to check out the STLPort project, which fixes many bugs and

memory leaks detected in earlier versions of the STL packaged with Visual Studio
6.0. It is included in the accompanying CD-ROM under /tools_install. Another

option for using the STLPort librariesis to ensure that you are working with the
latest version of the Platform SDK available from Microsoft.

CHAPTER EXERCISES

1. This chapter only touched on the large amount of tools available to the

game developer today. Do some of your own research with the help of
your favorite search engine to find your own favoritesites and resources.

2. Take some time to study some of the technologies and tools listed in this

chapter. When planning which to use,it helps to have a matrix created with
the strengths and weaknesses of each one to help the decision-making
process. Do not forget to include your own skills in order to help create or
rank the feature list you require that best matches the game you wantto
create.

3. Be sure to practice using TortoiseCVS to interact with the CVS server. Get
comfortable with manipulating and tracking many resources within a project.

4. Inspect the documentation accompanying CVSNT to add a layer of secu-
rity to your source code repository. Create an update account that has per-
mission to checkout, update, and checkin files, along with a read account,
which only has enough permission to checkout thefiles.

5. Practice using the STL with some other small programs, with an attempt to

use the map and vector containers often. Check in these small samples to

your CVS repository, be sure to comment the code, and use the Doxygen
tool to generate some documentation to accompany them.

SUMMARY

In this chapter you were introduced to some of the more common license arrange-
ments under which game software tends to be bound. You were given a brief overview
ofthe GPL, the LGPL, and the Creative Commons license arrangements. This chap-
ter also introduced and provided an overview of some of the game technologiesthat

28 Game Programming in C++: Start to Finish

exist for the game developer today. You were also introduced to some commonlyused development tools that can save you from many hours of struggling and frus-
tration. Regardless of whether you are a lone-wolf developer or are working in a team,
ensuring that there is a proper backup schedule and source code repository systemcan help save your project from certain doom should you experience any unfortunate
events. You were next shown how the Doxygen tool helps with generating HTML-
friendly documentation from source code comments. You also were briefly intro-
duced to the InnoSetup installation system, whichis a terrific package for creating
user-friendly installation binaries. You also covered some of the basics involved in
using the common container objects of the Standard Template Library, includinghow to use the string, vector and map containers.

When you havethe toolset needed to create your own fantastic adventures, youneed to learn how to take the necessary steps to design your project, which you will
learn about in the next chapter.

: Design Fundamentals

Chapter Goals

m Introduce some common software design methods.
Introduce software reusability techniques.
Introduce the Unified Modeling Language (UML).
Describe and cover the basic game phases.
Describe and develop a design document using the Agile design
process. -

improve your project, but it is most often overlooked by beginning game de-
velopers. It can help to reduce the amount of development time for your

game by minimizing some of the risks involved and enabling you to better plan the
development stages.

A
basic understanding of some common design fundamentals can radically

WHAT IS A GAME DESIGN?

At the highest level of your game project, the game design details and defines how

your game operates and responds to the player. The game design acts as a blueprint
or structure that you and your team will use to work through to the completion of

your game. It provides everyone with a central, single definition of what should

29

30 Game Programming in C++: Start to Finish

occur within the game world, depending on what conditions exist or what input is
received by the player. Design helps you map from the basic concepts of your gamethrough to the implementation. It is also the central document that aids in coordi-
nating tasks between team members. Design literally describes and entails the last
word on everything involved with the game.

Skipping the game design process can contribute to massive delays in the project in
the later stages. Programming by trial and error is not a manageable process. Not

VOTE only is it much more difficult to maintain a single vision without a central docu-
ment or design, but it can be nearly impossible to recruit any help without provid-
ing something the potential team member can browse through.

To help bring your gaming projects to fruition, you can take advantage ofsoft-
ware design principles that the professional programmers use: the classic waterfall
approach or an iterative design.

CLASSIC WATERFALL SOFTWARE DESIGN

You might already be familiar with this type of approach, since the classic waterfallmethod has been in use since the early daysof software design. The waterfall model
focuses on each phase of the design flowing into the next. This means that as youcomplete one phase of the design, you move into the next through implementationand testing phases, cascading down through the creation process like a waterfall.
Figure 2.1 demonstrates this method.

RELTT

Detail
Design

FIGURE 2.1 Classic waterfall design process.

Design Fundamentals 31

Some programmers and software engineers working on applications will swear
bythis design method in the real world, butit is not always the best model to fol-

low for game development. During the implementation phase of a project, for ex-

ample, you might realize that there are some flaws in the design based upon some
earlier (now erroneous) assumptions. After being perhaps months in development,
it is often far too late to return to your client and/or project manager to ask for
more time to rebuild a section ofthe code base.

The waterfall method also fails in some regards, as any software development
project is more of a fluid body of work than one thatis developedin isolation. What
if the current target market demographic suddenly changes, and your marketing
team demands some alterations to the game? What if technology changes much
more quickly than anticipated, and new hardware or effects become available to
implement in your game?

These are only a few ofthe pitfalls that you or your team can encounter during
the project; therefore, you should have one or more contingency scenarios defined.

ITERATIVE SOFTWARE DESIGN

Because of some of the problems associated with the waterfall design approach, most

game programmers (some unknowingly) tend to follow a much more iterative de-

sign process. Thisstyle ofthe design allows for much more fluidity and adaptation
to the projectif necessary.

Most of your gameplayis iterative in nature andis difficult to envision without
the benefits of building tests to see how the different rules ofyour game and/or uni-

verse interact with each other. If, after testing, you decide that some of the rules
need more tweaking or need to be removed altogether, the iterative method allows

you to adjust the design as necessary. In the waterfall method, objects within each

phase are pretty much set in stone as they depend upon objects created in the pre-
vious phase; therefore, any real tweaking is never allowed or even acceptable. Fig-

ure 2.2 provides an overview of the iterative process.
The “spiral” process underscores the continued process of requirements gath-

ering, making adjustments, and client feedback, which forms the heart and soul of
iterative design.

As you begin the overall design process, you are responsible for setting a sched-
ule that represents the timeline of the project to the best of your knowledge at the

present time. Along the way, you should mark project milestones, in which you and

your team have the opportunity to do a mini-evaluation on the project so far. If you
need to make any alterations or adjustments because of recommendations by the

marketing department orif you discover any serious problems with the design in

32 Game Programming in C++: Start to Finish

requirements

analyze test

develop
FIGURE 2.2 Iterative “spiral” design process.

general, this is a feasible approach to follow. Each milestone should have a subset of
goals that you and your team are looking to accomplish. Again, during each mile-
stone period, the team canalso readjust any or all ofthe upcoming goals.

Principles of Agile Design

During the 1990s, the forming of Agile design methodologies was a direct responseto models such as the waterfall approach, which were regarded by some as cum-
bersome, bureaucratic, and slow processes of creating useful software. Initially the
methods proposed by the Agile designers were collectively known as “lightweight”
techniques. In 2001 some prominent members ofthe iterative software design com-
munity met to form the Agile Alliance. Their first task was to create the Agile Man-
ifesto, which grouped these lightweight principles under the universal Agile brand.
This has become an extremely popular design process within the industry and ben-
efits software designers of nearly every type of application. The core principles be-
hind the Agile design methodology are as follows:

1. Minimize project risk by developing your software in short iteration peri-
ods, known as timeboxes, which last between one and four weeks.

2. Each timebox ofthe project is within itself a project of its own and includes
all ofthe tasks behind releasing any updates to the main project. This in-
cludes new planning, new requirements, gathering and analysis, coding,
implementation, and updating documentation.

3. The Agile method emphasizes personal communication involving face-to-
face discussions with the client. Agile stresses the fact that meetings or discus-
sions with the client should always overshadow the written documentation
on the project. Agile teams are usually formed within close proximity to their

Design Fundamentals 33

actual clients. For Agile purposes, clients are defined as the people who have
defined the project to begin with. External customers and project managers
are some good examples.

4. The progress of an Agile project is measured by the amount of functioning
code at the end of every timebox.

5. Agile welcomes requirement changes bythe client, even late in the project,
in orderfor the client to maximize any competitive advantage.

To the newcomers of this type of software design methodology, there is some-
times confusion between an Agile design approach and a pure ad-hoc practice in
which the developers simply work through the project in any direction they choose
with little restrictions. Since Agile methods emphasize continuous feedback along
with rigorous and disciplined processes, however, they create a successful environ-
ment with a clear direction and target.

Agile methods are focused around minimizing risk in the project. You are still

working from a larger picture but can prune any features from the project based on

your timebox progress.

One of the foundation principles of Agile is that the design is test driven in na-
ture. Agile developers create small tests to iteratively drive the project forward. Al-

though it is one ofthe principles of proper Agile design, creating a test framework
is out of the scope of this book. Please be sure to reference the Agile links contained
in Appendix F for further information.

When to Use Agile

Although this highly iterative process is eagerlyaccepted for quite a few projects, in
some cases the Agile methods might not work as well. The Alliance recommends
that teams using Agile techniques are no larger than roughly 10 developers in size.
These design techniques are also successful when used in projects that are extremely
volatile or contain rapidly changing requirements. A project as volatile as a game
makes Agile a perfect design candidate for you to learn and use to develop your
game software.

INTRODUCTION TO THE UNIFIED MODELING LANGUAGE

As you are learning about software design techniques,it should be apparent that
rarely does the project immediately shift into implementation and/or coding.
Regardless of which software design model you prefer, after you have created the

34 Game Programming in C++: Start to Finish

design document, it can save you a lot of time and hassle to transcribe your docu-
ment into a modeling language. The Unified Modeling Language (UML)is an at-
tempt to bring the concept of blueprints to the world of software design and
implementation. The language of UMLconsists of a number of different graphical

components that can be used to describe the architecture of your software. The ben-
efit of this technique is that you now have a common graphical representation of
your application that you and your team can follow. It becomes immediately ap-
parent which component relies on which other component; this can alert you to any
possible problems that might occur during the development phase of your project.

Although the UMLis not the only modeling language, it is becoming the most
widely accepted standard. In other words, this has major communication benefits
with the other developers on your team in regards to understanding the overall de-
sign and architecture of your system.

Basic Class Notation

Within UML,a simple rectangle is the basic notation for representing a class. The
rectangle is usually segmented into three sections. The uppermost section contains
the class name, usually bolded. The middle section contains any attributes for the
class, and the lowermost section contains any operations that the class can perform.
Figure 2.3 demonstrates this.

Class
Attribute

operation ()

FIGURE 2.3 UML class notation.

UML has a fairly strict differentiation between operations and methods of the
class. Within a UML context, an operation is a service that you can request from

WoOTE any object of a class, and a method is a specific implementation of the operation.

Visibility Notation

Within UML you can also provide an overview of the visibility of any attribute or
operation of the class. Since you are working with C++ for this book, this is equiv-

Design Fundamentals 35

alent to the usage ofthe public, private, and protected declarations. The charac-
ters -, #, and + declare the attribute or operation as private, protected, or public.
Figure 2.4 details visibility.

Class Name

+public — attribute
— private — attribute

protected||+ operation
+ operation
+ operation

FIGURE 2.4 UML visibility notation.

Comment/Note Notation

Within the UML there is also a notation convention used to display or provide any
additional comments the designer might have. This is provided via the Note model,
which can also be referred to as a comment. Figure 2.5 details a comment notation
in action.

This is the core component
ofthe Peon Engine. All Peon projects

{| must instantiate this object.

FIGURE 2.5 UML comment notation.

Modeling Class Relationships

As you are well aware, classes never exist by themselves in a vacuum. They are inter-
connected with other objects within the system. UML provides several relationships
between objects, which are defined as connections between two or more notational

36 Game Programming in C++: Start to Finish

elements. Within UML, there are three relationship types provided: a dependency, an
association, and a generalization.

Dependency Relationship
One of the simpler relationships to model, the dependency provides a mechanism
for one object to depend upon another object’s interface.

Association Relationship
A relationship that runsa little deeper than the dependency, the association provides
a mechanism for one object to contain another object. The UML provides two typesof associations to further help define your relationships: aggregation and composition.

Aggregation Association

An aggregation association is responsible for modeling a “has-a” relationship
among peer objects. The has-a wording means that one object contains another. A
peer means that one objectin the association is no more important than the other.
Figure 2.6 provides the UML notation of an aggregation association.

FIGURE 2.6 UML aggregation association.

A real-world example of an aggregation association can be the relationship be-
tween a franchise such as anyfast food restaurant and the everyday customer.In this
relationship, clearly the fast food outlet and the customer can operate independently
of each other. If the franchise outlet goes out of business, the customer will still exist
and can buy their favorite food product from another store. Likewise, if the cus-
tomer no longer purchases from the outlet, the store will still remain in business.

Composition Association

Composition associations are more rigid than the aggregate. The difference be-
tween the two is that a composition is not a relationship among peer objects. In
other words, the objects are not interdependent upon each other. Figure 2.7 pro-vides the UML of a composition.

Design Fundamentals 37

Franchise HQ a Franchise Outlet |

FIGURE 2.7 UML composition association.

A real-world example of a composition association is any typical food franchise
such as FastFoodInc. There is a central office that oversees and manages every Fast-
FoodlInc franchise outlet. These outlets cannot exist independently of the central
office. The composition association signals to you that if FastFoodInc’s central of-
fice goes out of business, then so must each franchise outlet (since they can no
longer represent the FastFoodInc brand). However, the converse is not true. If a
franchise outlet closes, the central office might still remain operational.

Generalization Relationship

The generalization relationship models the inheritance of one object to another. In
other words, it is a relationship between the general (interface) and the specific. For
this reason, you can substitute any child object for the parent class. Figure 2.8 de-
tails the UML representation of a generalization.

peon:|Renderer This is our interface to handle rendering oo

o |peon:0GLRenderer
This is the OpenGL implementation of IR enderer

FIGURE 2.8 UML generalization relationship.

38 Game Programming in C++: Start to Finish

The generalization is a physical manifestation ofthe is-a relationship that you
should be familiar with in C++.

SOFTWARE REUSABILITY

Reusability is another important concept to understand in all areas of development
including games. For the purposes ofthis chapter, reusability can be defined as both
code reuse and design reuse.

Code Reuse

Code reuseis a fairly obvious concept for most game programmers, butit is never-
theless an important aspectofreusability that can save you months of work.

As you build your experience in game programming, you will usually en-
counter situations in which you are redeveloping the same functions, methods, or
objects. All of this code needs to be properly tested before being migrated into your
game, and so you should only be redeveloping whatis necessary in any new project.
Generic modules, such as interfacing with the operating system, creating a window,
and so on, should be coded and tested one time and placed into a central library or
code repository for future projects. The small engine that you will create in this
book makes use of the STL, which is a good example of code reuse.

It can be typical for yourfirst game to take longer than any subsequent ones. After
all, you might just be learning how to do things for thefirst time, along with build-
ing a small set of common functions and objects with which to work. Subsequent
titles can take advantage of these objects, which allows you to focus more quickly on
implementing the higher level objects in your game. The only caveat here is to be
careful of over specification. Reuse done properly should reduce the amount of
code size and complexity. Reuse done incorrectly can lead to heavyweight frame-
works in which only a small fraction of objects are used.

Although not as obvious as the code reuse aspect of software, design reuse refers to
the common problems of software engineering that are solved a repeated number of
times. This is evident in most game programming circles or newsgroups, in which
the same types of questions are discussed again and again. If you abstract the ap-
proaches to solve these repeatable problems, you will get what are known as design
patterns. Design patterns aid in describing the optimal design solution to a common
problem. You will learn some of the more common design patterns that can help
you get past any hurdles in your game. Only a small selection of helpful design pat-

Design Fundamentals 39

terns will be presented for use with your project. You should take the time to find
some other quality design patterns that can be implemented as well.

With the Internet at your fingertips, there is no need to reinvent the wheel.

or Pattern 1: The Object Factory

The object factory is a class whose sole purpose is to allow the creation of families
of objects. This usually implies that all of the objects that can be instantiated by the
factory are derived from the same abstract base class. Listing 2.1 demonstrates one
example of an object factory pattern.

LISTING 2.1 Using an Object Factory

//BaseObject — this is the lowest level object that we derive
//others from for this design pattern.
//In other words, an ABC (Abstract Base Class).
class BaseObject
{

public:
BaseObject(){}; / /constructor
virtual ~BaseObject(){}; //virtual destructor
float %, VV, Z; //arbitrary member data
virtual void doMethod(){}; //arbitrary method

bs

//This is the ObjectA derived from BaseObject
class ObjectA : public BaseObject
{

public:
ObjectA(){}; //constructor
~ObjectA(){}; / /destructor
void doMethod(){}; //do some arbitrary thing

}s

//This is the ObjectB derived from BaseObject
class ObjectB : public BaseObject
{

public:
ObjectB(){}; / /constructor
~ObjectB(){}; //destructor
void doMethod(){}; //do some arbitrary thing

bs

40 Game Programming in C++: Start to Finish

//snip
//This demo ObjectFactory is used to generate new BaseObject
//instances.
//OBJECT_A — identifier for the ObjectA class
//OBJECT_B — identifier for the ObjectB class
BaseObject* ObjectFactory::create_object(int type)

{

BaseObject* pObj = NULL;

if(type == OBJECT_A)

{

pObj = new ObjectA();
}else if (type == OBJECT_B)
{

pObj = new ObjectB();

if (pObj){ pObj->doMethod(); } //if object exists, call doMethod

return pObj; //return our new object

Pattern 2: The Singleton

The singleton pattern ensures that one and only one instance of a particular object can
exist in your application. Thisis helpful when you want to guarantee that you have only
one instance of an object, such as the object encapsulating your audio or video hard-
ware.Listing 2.2 details this design pattern that is implemented within the Peon engine.

LISTING 2.2 /PeonMain/include/ISingleton.h

J **
* Template class for creating single-instance global classes.
* The code in this file is taken from Article 1.3 in the the book:
* Game Programming Gems from Charles River Media with the
* copyright notice going to Scott Bilas.
*/
template <typename T> class ISingleton
{

protected:

/** The static member object */
static T* ms_Singleton;

Design Fundamentals 41

public:

[%**

* Constructor
x
ISingleton(void)

{

assert(!ms_Singleton);
ms_Singleton = static_cast< T* >(this);

Jk
* Destructor
*f
~ISingleton(void)

{ assert(ms_Singleton); ms_Singleton = 0; }

[Ex
* This method just returns the internal member by
* reference
* @return T& - reference to internal abstract Type
xl
static T& getSingleton(void)

{ assert(ms_Singleton); return (*ms_Singleton); }

Ex
* This method just returns the internal member by
* a pointer
* @return T* - pointer to the internal abstract Type

* \

static T* getSingletonPtr(void)

{ return ms_Singleton; }

bs

//snip
//Now to use it in your code.
//The FileLogger object in the Peon engine just dumps info
//to a text file. You will learn about it later on, but here's
//a sample of its use (since it's derived from an ISingleton).
new FileLogger(PEON_LOG_DEBUG);
//Physically open the log file

FileLogger::getSingleton().openLogStream("PeonMain.log");

42 Game Programming in C++: Start to Finish

//Within any other module, you can grab the handle to the
//logfile by using the proceeding code.

FileLogger::getSingleton().logDebug(“Necronomicon”, “Klaatu Verata
Nikto”);

Pattern 3: The Publisher—Subscriber Pattern
This design pattern is useful for keeping the state of objects synchronized using a
one-way propagation of change notification. Normally, this means that you have
one or more objects designated as subscribers who register themselves with a central
object known as the publisher. When thestate of the publisher is modified, it then
proceeds to notify each of the known subscribers who can decide what to do with
the information. Listing 2.3 demonstrates one way this could be done.

LISTING 2.3 Using a Publisher-Subscriber Pattern

//This object is the subscriber object which just
//contains a method that allows it to be notified by
//the Publisher.
class Sub
{

public:
Sub (){}; //constructor
virtual ~Sub(){}; //destructor

//notification method
virtual void onNotification(Pub* the_publisher){};

};

//This object is the publisher object which has a container
//to store the list of Subscriber objects.
class Pub
{

private:
std: :1list<Sub*> m_oSubscribers; //list of subscribers

public:
Pub(){}; //constructor
~Pub(){}; //destructor
bool registerSubscriber(Sub* pSub); //add a new Sub to the list
void notifySubscribers() //iterate through the subscribers
{

std: :list<Sub*>::iterator it;

Design Fundamentals 43

for(it = m_oSubscribers.begin();
it != m_oSubscribers.end(); ++it)

{

(*it)->onNotification(this);
}

}

bs

Pattern 4: The Facade Pattern
Known most of the timeas a type of manager class, the fagade design pattern enables

you to provide a single object, which behavesas an interface to a group of similar re-
lated objects. One example of this pattern is to use a fagade interface to communi-
cate with your input or graphics subsystems. This object is especially useful at
reducing the amount of coupling, or object interdependencies, in your application.
By minimizing the amount of coupling in your code design, you reduce the amount
of time spent on replacing any subsystems should there be a necessity to do so. List-

ing 2.4 provides some background behind the facade design pattern.

LISTING 2.4 Facade Design Pattern

//This object contains our graphics device — say OpenGL.

class GraphicsDevice
{

public:
bool loadGraphics();

bs

//This object encapsulates the texture resources used by our
//game.
class TextureManager
{

public:
bool loadTextures();

}s

//This object encapsulates the font resources used by our game

class FontManager.
{

public:
bool loadFonts();

bs

44 Game Programming in C++: Start to Finish

//This "parent" object encapsulates the graphics device,
/ texture manager and font manager objects. When you need
/laccess to one of those objects, you have to go through
//THIS one first.
class GraphicsSubsystem
{

private:
GraphicsDevice m_oDevice;
TextureManager m_oTexManager;
FontManager m_oFontManager;

public:
//This method demonstrates how useful the Facade pattern is.//We use it to indirectly work with lower-level objects.bool loadGraphicsSubsystem()

{

bool value = true;
value = m_oDevice. loadGraphics();
value = m_oTexManager.loadTextures();
value = m_oFontManager. loadFonts();
//0bviously proper error checking is skipped. We're
/ljust trying to demonstrate the design pattern here!
return value;

bs

ANATOMY OF A GAME

Although games are incredibly complex and performance-intensive pieces of soft-
ware, they can all be abstracted to some common runtime phases that will be out-
lined and described here.

These phases are meant to outline the operational lifetime ofyour game whileitisrunning for the player. This is not an abstraction to the entire process of creating apr game in terms of management, product life cycle, support, and so on.

Initialization Phase
The initialization phase is the first phase involved in your game and obviously the
most important. Within this phase your program attempts to create interfaces tothe underlying hardware available on the machine and attempts to perform any orall of the following list of actions:

Design Fundamentals 45

Your video card is located and initialized to any desired resolution.
An interface to your sound hardware is created and opened.
Interfaces to your keyboard, mouse, and, optionally, the joystick are created.
Networking interfaces are loaded and initialized.
Any game-specific objects or data structures are loaded and initialized.
Game-specific graphics and audio resources are loaded and initialized.

When this phase is completed successfully, the game then proceeds to the

process phase.
It is normally a good practice to load as many objects and resources as possible

for your gamein this phase.

Process Phase

Throughout the course of the process phase, the game is responsible for updating
all of the game world objects, along with rendering (thatis, drawing) them to the

screen. You can, therefore, subdivide this phase into two subphases: updating and

rendering.

Updating Phase

The updating phase is responsible for a host of actions along thelines of the fol-

lowing:

® Updating all the game world objects for the current map, location, or level.

B Processing any collision-detection calculations to test which objects have hit
other objects to determine which ones are active or inactive within the game
world.

® Gather and process any input from the player to determine what your object
(thatis, the Avatar) is attempting to do.

® Gather and process any network events to determine your relation to other
players in the game.

Bm Process any artificial intelligence routines for computer-controlled objects or
players.

m Start or stop any appropriate audio file.

Rendering Phase

The rendering phase is responsible for drawing all of the game world objectsto the

screen. You must perform many chores here in terms of video object management,
but the primary goal of this phase is to get everything on the screen as quickly as

possible.

46 Game Programming in C++: Start to Finish

The game continues in the process phase until it has received a signal or mes-
sage that you wantto quit the game. It will then move into the destruction phase.

Destruction Phase

The overall goal of the destruction phase of your gameis to clean up any object orhardware device used during the lifetime of your game. You will need to performtasks like the following:

Clean up all ofthe audio resources and the audio hardware.
Deallocate all of the video resources and the video hardware.
Clean up all of the input devices used.
Shut down and cancel any further network communication and/or deviceinterfaces.

;

Clean up any object memory allocated during the lifetime of the game.

Just about every game moves through these phases in one fashion or another,and understanding these basics will help to provide an overview to how things aresupposed to work in your game projects.

THE SUPERASTEROIDARENA DESIGN DOCUMENT

Design documents created using the waterfall model often can be notoriously largeand complex in nature. One immediate problem with this approach is that as thedocument grows to encompass the project, not everyone in the team will properlyupdateit. Another issue with these large design documentsis that some team mem.-bers might not even reference it because they feel that some objects or design deci-sions that are documented might already be outdated. In an attempt to create adesign document that is both usable and maintainable, you can benefit from someof the Agile design techniques to create the SuperAsteroidArena project’s designdocumentation. Although the Agile design approach is tailored for working with acustomer to keep the project moving and updated, you will need to wear two hats
during development of SuperAsteroidArena as you are your own client.

Drafting a Project Overview
The initial project overview should contain a one- or two-line sentence describingthe overall game. This should be an exciting description ofthe whole purpose of the
game, which will attract any potential customers or players. Listing 2.5 details the
project overview.

Design Fundamentals 47

LISTING 2.5 SuperAsteroidArena Project Overview

Project Overview: The overall goal of this game is to annihilate
your opponents in space arena combat. Using your laser guns, you

need to maneuver your ship to rack up the most kills, while
avoiding death as long as possible.

What Type or Genre of Game Is It?

Now that you have defined an overview of whatis taking place in your game, you
need to decide what type or genre of game you are creating. Although this small list
of game genres is an attempt to categorize or classify existing software, there are

many examples of mutated types of games that blend together several different

genres.

Action/Arcade: This type of game usually involves the player being really
involved in the game world in order to win. Usually an action game has the

player performing a lot of fast and repetitive actions such as shooting a lot of
enemies while simultaneously dodging hails of lasers or bullets.

Strategy: A strategy game gives the player the ability to plan out his moves,
which usually centers on directing your resources to defeat the other players.
For strategy games, you can usually spot two subgenres of this game type:

Real-Time: This type of strategy game forces the player to make quick
decisions where they cannot spend too much time planning out their
empires. Although theystart out slowly, most real-time strategy (or RTS)

games quickly ramp up the action, forcing the player to frantically move
their units around the game world.

Turn Based: These types of strategy games are much slower than RTS

experiences and give the player as much time as they need to decide what
action to perform next. These games usually work by dividing the play into
rounds or turns. Usuallyat the start of each round, the player is given a cer-
tain number of resources with which to work. After the player has used up
these resources, the turn usually ends.

Adventure: Although these types of games are not released as often anymore,
adventure games revolve around the player experiencing a story through the

game. They usually involve some type of quest for the player to accomplish. For
the most part, they are single-player games that involve the player interacting
with the environment to complete tasks or quests which revealclues to proceed
within the adventure toward the final goal.

48 Game Programming in C++: Start to Finish

Puzzle: Puzzle games are very popular among the crowd of players who enjoybeing presented with a problem they must solve. They are enjoyed by a wide
range of players and typically have a difficulty of play that ranges from begin-ner to advanced as the player moves through the game. Puzzle games varytremendously in gameplay, as some are slow paced but others build the actionat a frantic pace.
Platform: Platform games are another popular category, where the goal of the
gameis to complete a journey or quest of some nature. You move your char-
acter through the game world by negotiating different levels or maps and usu-ally must collect items along the way to help you continue onward.

For the SuperAsteroidArena project, you can note in the documentation thatitshould be considered an action/arcade game.
:

Deciding upon a game genre will also help describe the projectto your friends and
any other potential customers.

NOTE

Who Is Your Audience?

This is a very important and critical question that needs to be answered as clearlyand as early as possible in your project. The more detail that you can provide here,the easierit will be to createa list of requirements for the game itself along with pro-viding some direction through the rest of the project. You need to decide who willbenefit the most from your game. Within most people or companies who are de-
veloping their own games, the audience can be broken into two basic categories:

The casual gamer: Depending upon whom you ask, this type of gamer com-
poses the bread and butter of the audience who typically supports a lot ofshareware titles on the Internet today. They represent an audience who enjoysplaying games, but also has other priorities in their lives such as work or fam-
ily. In other words, they are the type of player who wants to jump into theaction for shorter periods of time. This type of gameris also typically not verycomputer savvy. They are usually not very knowledgeable about upgrading anycomputer hardware, or even the basic risks or benefits behind upgrading their
core software. In other words, to target a more casual type of player, you needto ensure that your game will run on older hardware with little to no configu-ration required to execute your game. They should be able to double-click onthe icon to launch your game. Period.

Design Fundamentals 49

The hardcore gamer: This type of gameris usually more computer savvy and
enjoys the types of games that push their machine slightly harder than a casual

game would (on average). This type of gamer would be more willing to sit
down and play your software for a longer period of time or at the very least, in-
vest more into your game. They are usually not afraid to update any core soft-
ware components, such as applying new video drivers and so on, to play your
game properly. With the more hardcore crowd, you can afford to use slightly
later technology, such as OpenGL extensions or a newer version of DirectX.

Why Make the Game?

Another critical question to answer at the beginning of the project is why you want
to make this game. Instead of answering with a vague (and unmeasurable) response
such as, “to make money” or “to have fun,” it might be more useful to describe why
someone will choose your game overa similar product even if you have no intention
of selling the game. There are many different clones ofAsteroids available on the In-
ternet, for example, so you should be prepared to discuss why a player might want
to choose your version of SuperAsteroidArena over another clone game. This is a very
important part of the design process, as you will need to demonstrate to anyone that
your game is different.

What Do You Want To See?

Although this can change during the project development or testing stages, describe
here what you are envisioning as the outcome of your project. When the player
launches the finished product, what should he see?

For example, in SuperAsteroidArena, the player should be able to fly around in a
section of space with the ability to blow up the other players to win the round. The
player should be viewing the game world from an overhead bird’s eye vantage point
as they fly through a quadrantin space inhabited by asteroids and the otherplayers.

What Does It Offer?

If a player were to download and purchase your Asteroids clone (or any game), what
features does your gameoffer that separates it from the others? This is definitely a
follow-up question to the previous two. To help decide on a feature list that you
want to promote for the game, begin by doing some basic market research. Now that
you have chosen the genre of your game, along with what type of player you are tar-
geting, you can spend some time on the Internet to find other comparable products
and create a document detailing how they are similar and how they differ. Although

50 Game Programming in C++: Start to Finish

you can find more resources in Appendix F, “Further Resources,” game portal sitessuch as RealArcade.com or BigFishGames.com provide a common gateway to hun-dreds of downloadable games. Although it is tough (thatis, impossible) to find ac-tual sales figures for these games, most of the game portal sites will have a ranking ofsome kind, which can help discern what is a popular sell. Select a few of the top-sell-ing games, which more or less match the type of game you want to create. Study the
games themselves from a more analytical approach. What type of system require-ments do they have? Is the gameplay between them all similar, or do they try to makea different experience?

DRAFT AN INITIAL LIST OF TIMEBOXES

After you finish answering the preliminary questions for your design document,
you will then segment the project into several timeboxes to accomplish the overallgoal of creating the Asteroids clone. At the end of each timebox, you can evaluatehow the subsection fits into the overall project as well as verifying thatit does notneed any modifications.

For this project, you will be working with five timeboxes:

Foundation and state timebox: The goal of this segment is to create theunderlying objects to launch the game. This segment should also have somerudimentary states defined for the game, which you will fill in as the project
progresses.
Graphics timebox: The goalofthis segment of the project is to create the un-derlying objects necessary to create and display some of the basic graphics ofthe game including any graphical user interface components. This is covered inChapter 10, “Working with Input Devices.”
Input and sound timebox: The goal of this segment is to create and add the
components necessary to the game to provide audio feedback and properlycommunicate with your input devices. This is covered in Chapter 12, “Inputand Sound Timebox.”
Networking timebox: The goal of this segment is to ensure that proper net-work communication is taking place between the game world and every playerinvolved in the game. This is covered in Chapter 15, “Networking Timebox.”
Special effects timebox: The goal of this timeboxis to add some special effectsto the game to makeit far more visually appealing. These aspects are covered inChapter 20, “Polish Timebox.”

Design Fundamentals 51

As you work through the timeboxes in this project, you will be constantly evaluat-

ing or updating the design document. This is a pieceof the project that should def-

WOTE initely be added into your CVS repository.

The design document might seem a little on the lighter side, but you will be

adding only what you need as you work through each timebox. Thisis a bit of a

chicken-egg scenario—if thisis your first game project, you will not really be aware
of what kind of components are needed in the game you are trying to design. This
is the reason behind learning an iterative design approach for this book. As you
work through each timebox or phase of implementation, you can make iterative
adjustmentsto the design.

WHO IS INVOLVED?

Although not a specific part of a game design document, but more of a project man-

agement aspectof the development, it is still important to decide on who is involved

in the project and whatroles they are to play. Although this book is assuming you are
virtually the single stakeholder, you might eventually decide to incorporate extra

help where or whenit is needed. For example, you might decide to purchase your
sound and artassets from an artist over the Internet, and so on. This all depends on
where your strengths of the project lie along with how much time and energy you
can invest into the game.

BUDGET CONCERNS

Even if you are creating (or planning) your game “for fun,” it might be wise to con-
sider developing a budget. The day may come where you might be creating a pro-
ject for actual commercial sale and would definitely need to have a grasp on the

budget surrounding your game. (How else do you calculate profit margins?)
Budget planning involves tracking the financial cost of the project (in strict

dollars) along with the “effort” cost (in terms of time). Some developers argue
that both are one and the same, but it might help to consider them separate enti-

ties for now.
If this is your first “serious” project, or indeed the first project you want to use

tracking measures on, then it would help to create a spreadsheet to act as a logbook
for the project. Although atfirst it might seem like a chore, try to keep an updated
account of the time and money spent on the project. Even if you are only able to

52 Game Programming in C++: Start to Finish

spend 30 minutes a day on “project-related” issues, put it in the log.It will be onlyas accurate and detailed as you keepit.When the project is over, you can better understand how and where you arespending your time and money. This can be one method of pinpointing any mys-terious sinkhole problems, butit also will help you better estimate your effort onfuture projects.
As you gain more experience, you will become better at gauging how longit willtake you to implement certain types of modules, and so on. This can be a criticalfactor in deciding on a project to invest your efforts.
Even if you are the only developer involved in the project, you should not beunder the impression that working on your own time is “free.” For the first fewprojects, grant yourself an arbitrary salary or hourly wage. When the project is fin-ished, use this wage value to determine how much your own project cost you if youwere to pay yourself. This can be another determining factor in the type of projectsyou will embark upon.

DEMO VERSUS REGISTERED FEATURES

In nearly every game released on the Internet today, the standard approach formost companies or developers is to produce a demo version of the software, whichprovides the player with a small insight into the game world. It gives the player achance to test out the game’s basic gameplay along with any otherfeatures you wantto expose to the player to further entice or convince him into buying the full ver-sion of your product, the registered version. In this design phase, you have alreadycreated a list of features that your game will have. Depending upon how serious youare about the project, you should also break thislist into features that are includedin the demo (or shareware) version of the game and which ones are featured in theregistered version. Within the demo version of the game, itis also a common ap-proach to present the player with a friendly screen describing why they shouldbother to register your product by sending you money. Also known as a nag screen,this gives you a chance to advertise the features that you restricted to the registeredversion of the game. Perhaps you include more weapons for the player or moremaps and levels to enjoy. Perhaps the registered version allows up to 16 players toparticipate in a multiplayer session, whereas the demo version might only allow 2or 4. These lists of features are obviously dependent upon the type of game you arecreating, so do not forget what you learned from your basic market research.Within the group of products you are competing with,for example, they might allinclude dozens or hundreds of maps to the playerafter they register.

Design Fundamentals 53

CHAPTER EXERCISES

1. Within the UML, how do you design a class or method thatis abstract?
2. Understand the advantages and disadvantages of the classic waterfall design

method compared to the iterative process. Further investigate the design
methodologies such as eXtreme Programming (XP) or Pair Programming
techniques.

3. Although the waterfall process might not seem ideal for most game projects,
discuss any situations in which the waterfall method might be necessary.

4. Take some time to research other useful design patterns that can help your
code practices. Although not always the “magic bullet,” design patterns
can simplify many aspects of your application and can improve your de-

sign and programming skills.

SUMMARY

You were introduced to a wide variety ofcommon software engineering topics within

this chapter. You learned the differences between the classic waterfall and iterative de-

sign methods. You were also introduced to the concept of software reusability along
with a shortlist of design patterns that are useful in solving some of the common de-

sign problems facing most developers. Although brief, the introduction you were

given covered using the Unified Modeling Language to learn more about document-

ing and designing your software. You also were provided with an introduction behind
the fundamentals of how a game operates and functions. Finally, you were also in-
troduced to the design document and how to create one that will help decrease the

amount of time spent actually implementing your game. In the next chapter, you
learn how to develop the foundation of your game engine using the SDL.

® Introduction to SDL
and Windows

Chapter Goals

Introduce the SDL toolkit.
Demonstrate how to startup, run, and shutdown SDL.

Provide an overview of the SDL event queue.
Introduce some file logging and INI file reading mechanisms.

Explore the Component Object Model.
Introduce a Dynamically Linked Library.

saw listed in Chapter 1, “Game Technologies.” On the Windows platform,

not only are there different versions of the Microsoft DirectX API from which

to choose, but many open source libraries and game development toolkits spanning

many different programming languages are also available.

F or creating games on the PC today, several dozen options are available, as you

INTRODUCTION TO THE SIMPLE DIRECTMEDIA LAYER

For this book, you will be using the Simple DirectMedia Layer (SDL) created and

maintained by Sam Lantiga and a great community of helpful programmers. By

using the SDL asthe base toolkit for your projects, you are ensuring that your game

56 Game Programming in C++: Start to Finish

can function on a wide array of the Windows operating systems as well as makingyour programs more portable to other systems such as Linux or the MacOS.Besides having the ability to create cross-platform code, another benefit ofusing the SDL is thatit assumes the lower-level responsibilities of window creationand management, which can become an unnecessarily daunting and tedious
process for the beginner Windows programmer. Most of the skills and conceptsthat you will learn by using SDL can also be directly applied to any future DirectX
project.

Forsetting up and configuring your C++ compiler to work with the SDL, please referto the instructions listed in Appendix A, “Setting Up the SDL and the Compiler.”

Why Use SDL Instead of DirectX?

Although some of today’s AAA (that is, big budget) game projects developed on the
~ PC use DirectX, this book focuses on using the SDL (and OpenGL) toolkit for cre-ating your game. Not only are previous versions of Visual Studio not supported inthe latest version ofthe DirectX SDK, there are platform restriction considerationsas well. Users ofthe DirectX 9.0c SDK will be able to use only the Windows XP andhigher family of products to develop games, whereas SDI and OpenGL supportnearly every version of Windows since NT along with major platforms such asMacOS and Linux. In other words, using SDL and OpenGL allows you to expandthe potential audience of your game, which can lead to more interest and moresales. SDL is also a proven commercially viable toolkit for the shareware develop-ment community. Many successful independent projects have been released usingthis library.

SDL “Hello World”

ON THE CD

The convention among learning nearly any programming language is to create askeleton application that displays the text “Hello World”to the screen or console.Even though this book focuses on game programming, it will not deviate from thisconvention.
After you have configured your favorite IDE/compiler according to the in-structions given in Appendix A, you can begin with your first SDL application.(<> Listing 3.1 presents you with a basic SDL program located on the CD-ROM in

\chapter_source\chapter_03\HelloWorld.cpp.

Introduction to SDL and Windows 57

LISTING 3.1 SDL “Hello World”

#include <SDL.h>

int main(int argc, char* argv[])
{

//initialize SDL and the video subsystem
if(SDL_Init(SDL_INIT_VIDEO) < 0)

return -1;

//signal SDL to change the text of the main window

//to "SDL Hello World"
SDL_WM_SetCaption("Hello World", "Hello World");

//create an SDL_Surface object which represents the
/ /game window

SDL_Surface* screen = SDL_SetVideoMode (640, 480, 0, 0);

//load the SDL logo bitmap to a temporary surface
SDL_Surface* temp = SDL_LoadBMP ("data\\textures\\sdl_logo.bmp");

//create the working SDL_Surface which matches the
//display format of the temporary surface
SDL_Surface* bg = SDL_DisplayFormat (temp);

//free the memory allocated to the temporary SDL_Surface
SDL_FreeSurface (temp);

SDL_Event event;
bool quit = false;

//This is the main message loop of the game

while (!quit)
{

//check the message queue for an event
if (SDL_PollEvent(&event))
{

//if an event was found
switch (event.type)
{

//check to see if the window was closed via the "X"

case SDL_QUIT:

58 Game Programming in C++: Start to Finish

//set the quit flag to true
quit = true;

break;

//check the keyboard to see if the ESC key was pressedcase SDL_KEYDOWN:

switch (event. key.keysym. sym)
{

.

case SDLK_ESCAPE:

/1set our quit flag to true
quit = true;

break;
}

break;

//draw the background sprite
SDL_BlitSurface (bg, NULL, screen, NULL);

//update the current window
SDL_UpdateRect (screen, 0, 0, 0, 0);}

//free the allocated memory for the background surfaceSDL_FreeSurface (bg);

//quit SDL and allow it to clean up everythingSDL_Quit();

//return control to Windows with no errorsreturn 0;

Do not forget to link your projectto the sdl.1ib and the sdlmain.lib libraries
After you compile and run the application, you should see a window appearsimilar to Figure 3.1.

Introduction to SDL and Windows 59

FIGURE 3.1 HelloWorld output.

The approach taken by the Hellowor1d application is to demonstrate how easy
it is to get a simple SDL application up and running. The first task is to initialize the
SDL subsystem and internal components, which is accomplished by one function
call: sbL_Init. Next, you use SDL to generate the main window for your applica-
tion. In this case, the window size and video resolution is 640 pixels wide by 480

pixels high (also known as 640 x 480). The next step is to load the SDL logo bitmap
onto a structure that SDL can internally manipulate, the sbL_Surface. After the

bitmap is loaded into memory properly, the main application enters the main loop.
Until you exit the application by killing the main window, the program is in an in-
finite loop and is constantly flipping the window device buffers in order to present
the SDL logo image onto the screen. You will learn more about this whole process
as you begin to add components to the Peon engine, which is built upon the SDL

toolkit.

60 Game Programming in C++: Start to Finish

Creating the EngineCore
One ofthe main components of the Peon engine, whichisthe game engine that youwill be using throughout this book, is the Enginecore object that is responsible for
starting up and initializing the important subsystems. It is also responsible for pro-cessing the SDL message queue, which receives event notifications from both events
generated by the player and the underlying operating system. Although you will
learn more about this object in the next chapter,it contains most of the backbone
thatis responsible for communicating with the operation system. Listing 3.2 doc-
uments the EngineCore object definition.

LISTING 3.2 Peon: :EngineCore Definition

//This is the main core object of the Peon library which
//internally initializes the SDL components and puts the
//application into the main loop. Ignore the PEONMAIN_API for
//now. It is just signaling that you are marking this object//to be exported from the PeonMain.DLL
class PEONMAIN_API EngineCore : public ISingleton<EngineCore>
{

public:
J **
* default destructor
&/

~EngineCore();

| **
* Default Constructor */
EngineCore();

static EngineCore& getSingleton(void);

static EngineCore* getSingletonPtr (void);

[**
* @param strWindowTitle - our application window title
* @param strIniPath - our path to our .INI file
* @return result if we succeeded or failed initialization
*/
bool loadEngine (const String& strWindowTitle,

const String& strIniPath);

EEE ESEEEee

Introduction to SDL and Windows 61

[*%
* This method is responsible for unloading
* @return nothing
xr
void unloadEngine();

JR
* This method is responsible for launching and running our
* entire
* core and application
* @return int - any error code
yf
int runEngine();

bs

Deriving itself from the I1Singleton object that you saw in Chapter 2, “Design
Fundamentals,” the EngineCore definition so far is fairly basic and provides you
with a simple method to load your engine and allocate some basic system resources
(during the initialization phase of your game). It also provides a method to clean up
any object memory allocated during the loading phase and/or the lifetime ofthe en-
gine itself (that is, the destruction phase). Finally, it provides a method to launch
the main loop ofthe engine (that is, the process phase). It is important to introduce
and cover this object at this time, as it forms the heart of the Peon engine, along
with nearly every game project upon which you will ever embark.

Initializing SDL

When you use the loadEngine method of the EngineCore object that you just de-
fined, you are internally loading and initializing needed components of the SDL.

Take a look at the EngineCore. cpp file and notice the use of the sbL_init function
shown in Listing 3.3.

LISTING 3.3 EngineCore::loadEngine

bool EngineCore::loadEngine(const String& strWindowTitle,
const String& striIniFile)

{

int retval = 0;
char strOutput[512];

62 Game Programming in C++: Start to Finish

//The SDL_Init method does all the grunt work of initializing//the subsystems and components of SDL for you.
retVal = SDL_Init(SDL_INIT_EVERYTHING 5
if(retval <0)

{

//there was some kind of error. Make a note of it
sprintf (strOutput, "Failed to initialize SDL subsystem %s",
SDL_GetError());

/loutput the error message to the debug window of the IDE
OutputDebugString(strOutput);

//do the garbage collection
unloadEngine();

//return creation failure
return false;

/1if the initialization completes successfully, simply
//change the title of the main window to our application
SDL_WM_SetCaption(striWindowTitle.c_str(),

striWindowTitle.c_str());

return true;
©}

The SDL/Windows Event Queue
A main driving force behind the design of Windows is that it is an event-driven op-erating system. This means that as you perform an action in your application, either
by clicking the mouse or resizing your application window, the corresponding
event is being generated and posted to your application’s main message queue bythe operating system. Figure 3.2 shows an overview of this process.The SDL followsthis same design philosophy, and every SDL application mustdefine and use an event queueto listen for any specific events. Listing 3.4 displaysthe basic event queue that is contained within the EngineCore: : runEngine method.

Introduction to SDL and Windows

User Moves Mesa
Joystick

Message

Message

Joystick
Event Message Event

Queue

FIGURE 3.2 Event messages generated and passed to the queue.

LISTING 3.4 EngineCore::runEngine

int EngineCore::runkEngine()
{

bool bDone = false; // is main loop finished?
SDL_Event event;

// as long as our main loop is not done
while (!bDone)
{

while(SDL_PollEvent(&event))

{

/1 while we have an event message in the queue,
// you need to determine what it is
switch (event.type)

{

case SDL_QUIT : // if user wishes to quit
bDone = true; // this implies the main loop is done

break; :

63

64 Game Programming in C++: Start to Finish

default: //default is to do nothing
break;

} //end switch
} //end while(SDL_PollEvent)

/lupdate the game here since the events are done processing//ie. the Process Phase

} //end while(!bDone)

//the game is finished and is exiting. Do the garbage collection
unloadEngine();
/Ino errors, return 0
return 0;

}

This event queuein Listing 3.4 is a verybasic methodof structuring the mainloop of your application. You are putting the program into a continuous loop,which is only responsible for listening to the SDL event queue. If there was a mes-
sage received in the queue, test it to see whetherit is the quit event.If it is, then sig-nal to the main loop that you are ready to exit. If it is not the quit event, orif there
are no messages detected in the event queue, thenit is time to process one frame of
your game (thatis, the process phase). After one frame has been updated and ren-dered, the loop will start again at the beginning to test whether there is an SDLevent message waiting in the queue.

Cleaning Up SDL

When your application has finished or the user has decided to quit your game,it is
necessary to perform some cleanup procedures in order to properly free up anymemory used by your application. You should never rely on the operating systemto do the work for you, as it is not always guaranteed that it will. To clean up any ofthe underlying SDL constructs and objects, you simply need to use the SDL_Quitfunction used in the unloadengine method as shown in Listing 3.5.

LISTING 3.5 EngineCore: :unloadEngine

void EngineCore::unloadEngine()
{

//clean up any allocated memory and/or objects//be sure to call this last to finish the SDL cleanup
SDL_Quit();

}

— SEE —

Introduction to SDL and Windows 65

Big Endian versus Little Endian

Because SDL is a cross-platform library, you might have aspirations to port your
project to other operating systems such as the MacOS or Linux. Even if you stick to
the SDL to handle most of the underlying architecture of your game or engine, you
occasionally might have to deal with Endian issues depending on whether or not
you are working with code targeted for the Intel family of processors used in Win-
dows, or the RISC architecture used on the MacOS platform. Originally named
from Gulliver’s Travels, which takes place in Lilliput, the Endian orderrefers to the
order in which the bytes of a 16- or 32-bit word data type are stored in computer
memory. Figure 3.3 shows more details.

MSB LSB

31))

Big Endian

MSB LSB

0
; '

31

Little Endian

FIGURE 3.3 Big-Endian versus little Endian.

Big-Endian is when the most significant value in the data (that is, the big end)
is stored at the lowest storage address (that is, the first); in the little-Endian archi-
tecture, the least significant value of the data is stored at the lowest storage address.
By default, the version of the SDL library you are linking to for this book is using
the little-Endian architecture since you are more than likely working on an
Intel/AMD-based processor.

ADDING THE FILELOGGER

The nextstep is to allow for some application-level file logging. If and when other
subsystems fail to initialize and start up, you need to be made aware of the key

66

ON THE CD

RR

REI
EEE

Game Programming in C++: Start to Finish

reasons for the generated failures. A FileLogger object is a valuable tool for any pro-grammer to record any key events or errors generated by your application, which
might not always be able to access the console to use a printf statement.

Although the Visual Studio environment provides a basic debugging mecha-nism by allowing your code to throw comments to the debugging window via the
OutputDebugString API call, which is equivalent to a simple printf statement, notall compilers support this function.

You can create your own text output mechanism that logs statements into a flatfile. This is useful for outputting any debug information you might wantto take alook at, or even for displaying valuable information for support reasons (say torecord the player’s operating system version, any DirectX/OpenGL version infor-
mation, video card driver manufacturer, version of the drivers, and so on). Take aquick look at the FileLogger object that resides in the code for this chapter on theCD-ROM. :

This object can now be added to the EngineCore object, in order to provide alogging mechanism (see Listing 3.6).

LISTING 3.6 FileLogger Object Sample Code

//create a new instance of the FileLogger and set it to//filter no messages. .ie. log everything
new Filelogger(PEON_LOG_DEBUG);
//open the log file

FileLogger::getSingleton().openLogStream(*PeonMain. log");

//log the first statement as a "debug" message
FilelLogger::getSingleton().logDebug("EngineCore" "* starting logfile *");

/* snip */
//log an "error" statement
FileLogger::getSingleton().logError("EngineCore" “renderer failedto initialize");

//close the logger
FileLogger::getSingleton().closeLogStream();

Now when you compile and run the project, a text file containing the pesualevel of messages will be created in the same folder as your executable, named
PeonMain. log. The FileLogger object works by implementing a system of logginglevels. When you instantiate this object, you must specify what type of logging level
you want the instance to capture. There are currently four levels of logging with this

Introduction to SDL and Windows 67

object: DEBUG, INFO, ERROR, and FATAL. DEBUG level messages are meant to pinpoint
any potential problems that might occur during the testing of the game. For exam-
ple, an object might not properly initialize, or you might want to verify that a par-
ticular code branch is being executed. The INFO level of logging is just meant to
inform you of events that might be useful for any application tracing—for example,
recording the driver version of OpenGL detected on the system or the amount of
system RAM, and so on. The ERROR level is meant to only capture log events that
record a failure of some kind. This happens usually when a subsystem or some
component fails to properly initialize. If a component registers an ERROR message in
the log, it does not necessarily mean that the game mustexit. For example, if your
game detects that no sound hardware is available, it will fail the initialization of the
sound subsystem. However, the game should still function properly; just without
any sound feedback to the player. The final FATAL category is used when the appli-
cation must exit. For example, if the video subsystem fails to initialize then the
game should exit immediately.

Using Windows Initialization Files

Prior to the Windows Registry, application configuration information in Windows
was loaded and stored from a smallfile known as an initialization or INIfile. This
file could contain any parameter or other type of application-specific information
that could be read during the runtime of the application, thereby being more able
to adapt to different system settings of a particular Windows installation. Although
it is far more detailed and massive, the current Windows Registry is more or less a
giant warehouse of INI information.

For your purposes, though, the System Registry is a bit too “hidden” for your
application user, not to mention that you would have to rip out any registry-specific
API should you decide to port your game to another platform. The INI family of
functions introduced by Microsoft is a lightweight approach capable of loading
and storing any type of configuration information that the game could benefit
from.

For example, some perfect information to store or load in an INI configuration
file is the window size of your game, such as 640 x 480 or 800 x 600. This would
allow any client of the game to modify the window size depending upon their ma-
chine resources and resolution preference.

Check the source code for this chapter for more details, but you can now throw
in the IniConfigReader object into the EngineCore object that already exists. This
gives you the ability to read in potential configuration information such as your
main window size during the runtime of your game.

68 Game Programming in C++: Start to Finish

First, you add some new variables to the EngineCore headerfile definition, aswell as add a string parameterto your loadEngineCore method for the path of theINT file defined in Listing 3.7.

LISTING 3.7 Code to Add to Your EngineCore Header File

int m_dwWidth;
int m_dwHeight;
IniConfigReader* m_pConfig;
/* snip */

bool loadEngineCore (const String&, const String);
Now you need to modify the loadEngineCore method slightly to accommodatethe new object, whichis shown in Listing 3.8.

LISTING 3.8 Updated Code for Your EngineCore::loadEngineCore Method

bool EngineCore: :loadApplicationCore (const String& strAppTitle,const String& strConfigPath)
{

//snip
m_pConfig = new IniConfigReader(strConfigPath);

//now read our window size
//by default, if there's No appropriate value in the INI file//called "WindowWidth"
//or "WindowHeight", then we use a default value of 640x480m_dwWidth = (DWORD)m_pConfig->getInt("Application®,

"WindowWidth" 640);
m_dwHeight = (DWORD)m_pConfig->getInt ("Application®,

"WindowHeight", 480) ;

//snip

S50 now you can create a new file in your project folder called system. ini andedit it as shown in Listing 3.9.

Introduction to SDL and Windows 69

LISTING 3.9 Sample Configuration Information

[Application]
WindowWidth=800

WindowHeight=600

In the updated main. cpp file, you just need to add the path to your system. ini
file in the method call to 1oadEngineCore noted in Listing 3.10.

LISTING 3.10 Updated main.cpp Code

#include "PeonMain.h"

using namespace peon;

int main(int argc, char* argv[])

{

new EngineCore();

if (!EngineCore::getSingleton().loadEngineCore (

"WindowTest", "System.ini")))
{

return -1;

return(EngineCore::getSingleton().runEngine());
}

Take a few minutes to play with the In file settings. You have no error check-
ing, so it is possible to specify weird window sizes of 310 x 489 or 1033 x 21, for ex-
ample. Internally, the IniConfigReader uses the GetPrivateProfileInt and
GetPrivateProfileString function calls, which are native to Windows.

THE COMPONENT OBJECT MODEL

Another aspect of programming in the Windows operating system is to under-
stand the principles behind the Component Object Model (COM) technology. Al-
though you do not need to understand the massive inner workings, you should
understand a few design aspects of COM architecture that might come in handy.

70 Game Programming in C++: Start to Finish

The Component Object Model was introduced quite a few years ago by Microsoft
as a guideline for creating component interfaces. It is essentially an interface for cre-
ating black box type objects. You have a set of defined inputs and outputs to each
object, but you do not care about the logic within the components. You only care
that depending upon certain inputs, you expect certain outputs. The basic goal of
COM was to create software components that could be interchanged with each
other, similar in nature to a stack of Lego blocks. In principle,it is a clean way to
organize your software development, as you can isolate (and update) different
components of the application without requiring a complete rebuild (or reship-
ping) of the entire application itself.

For example, you decide to create and ship an application using COM objects
to track and display the player’s information in a Massively Multiplayer Online
Role-Playing Game (MMORG), such as Everquest or World of Warcraft. After some
work with the application, you are able to improve the performance of a COM ob-
ject the application uses to track in game crafting skills. Since the input and outputs
to the COM object have remained the same, you simply need to ship the updated
COM object to your customers rather than have them download the entire appli-
cation again. Do not forget that not everyone is on broadband.

Another benefit to the COM model of component developmentis that it pro-
vides a wayto help track resources within the operating system. By deriving your
COM object from a known COM interface, you can then keep track of how many
times any object is instantiated or destroyed within your application, which is

known as reference counting. The interface itself uses this internal counter to track
how many other interfaces are using it. When an objectis created, its internal ref-
erence count is incremented. Similarly, when the object is no longer needed, its ref-
erence counter is decremented.

If your application then exits with any object having a reference count higher
than zero, then you know that there is a memory leak somewhere as you have an
instance of an object being created but not destroyed.

IUnknown is the base COM object from which all the components derive and is

shown in Listing 3.11.

LISTING 3.11 Sample IUnknown Definition within COM

struct IUnknown
{

//this method is used to access the interface
virtual HRESULT

__stdcall QuerylInterface(const IId& iid, (void
**)ip) = 0;

Introduction to SDL and Windows 71

//this method is used to increase the interfaces reference count
virtual ULONG

__stdcall Addref() = 0;

//this method is used to decrease the interfaces reference count
virtual ULONG _stdcall Release() = 0;

bs

When the internal reference counter does reach zero, the system’s internal
garbage collector can remove it from memory.

This is also a reminder to clean up any and every object you have used during the
lifetime of your application. This properly decrements the reference counters of

pr some of the internal objects, which the system can then clean up properly. Ifyou
leave any objects behind during the garbage collection process, there is no guaran-
tee that Windows will clean it up for you, thereby introducing memory leaks to

your host computer as well as your customers.

THE TUNKNOWN OBJECT

You can also create a primitive reference counting mechanism of your own using
the unknown interface defined in the Peon library. Listing 3.12 defines the object.

LISTING 3.12 /PeonMain/IUnknown.h

namespace peon
{

/** This object is used for reference counting to try and help
debug any

* memory leaks */
class PEONMAIN_API IUnknown
{

protected:
/** the run-time type identifier
int m_RTTI;

/** the current reference count of this object */
int m_refCount;

72 Game Programming in C++: Start to Finish

public:
IUnknown() : m_refCount(1){}
virtual ~IUnknown(){}

[** This method just increments our reference count. Ie. we're
making

* a copy of an existing object */
void addRefCount() { ++m_refCount; }

/** This method decrements our internal reference count. Ie.
We're

* cleaning up a copy of an existing object */
bool dropRefCount()
{

—m_refCount;
if (!m_refCount)
{

//if this is the final instance of this object, then
clean it

//up from the memory heap
delete this;
return true;

}

return false;
}

bs
}

In practice this takes a bit of getting used to, butit can also help track down po-
tential memory leaks. Whenever you make a copy of an existing object, it is then the
appropriate time to increment the object’s reference count. When a copyis re-
moved, then you decrementit. Listing 3.13 details this in action.

LISTING 3.13 Using IUnknown

//in this sample, ObjectA is derived from IUnknown
ObjectA* pObjA = new ObjectA();

Introduction to SDL and Windows 73

//snip
//we want to use ObjectA as a member variable inside another object
//this means that you now have two copies of pObjA floating around.
ObjectB* pObjB = new ObjectB(pObjA);

//in the constructor of ObjectB
ObjectB::0bjectB(ObjectA* pObjA)

{

m_pObjA = pObjA;
m_pObjA->addRefCount();

}

//now in the destructor..do not delete m_pObjA, simply decrement the
//reference Count
ObjectB::~ObjectB()

{

//do not delete the pointer to ObjectA, as this would then
//destroy ObjectA which we might not want to do. Just decrement
//the reference count
m_pObjB->dropRefCount() ;

INTRODUCTION TO DYNAMICALLY LINKED LIBRARIES

Dynamically Linked Libraries (DLLs) are an important and integral aspect of
Windows programming, which fits into the COM paradigm. A DLL contains either
a library of executable code or resource data that can be loaded and used by any
Windows application during execution of the program. Multiple applications can
reference a DLL.

The main benefit of using a DLL is that your project need not quit just because
an optional feature does not work. Your program can continue as necessary, but
simply not allow the user to perform the action requiring the missing DLL.

For example, in Microsoft Word you can editfiles and then automatically mail
them across the Internet. The Internet module can be contained within a separate
DLL so that the main editor can still fully function even if the user has no Internet
connection detection.

When working with DLLs in your application, when you compile your pro-
gram, the machine will only record certain indexes into the DLL. The main work of

74

NOTE

Gri
ON THE CD

Game Programming in C++: Start to Finish

making the DLL accessible to your program is through the loader mechanism in-
cluded with Windows. The DLL can bereferenced in two ways: loadtimeor runtime.

Loadtime linking occurs as you start up and launch your application. The DLL
loader will attempt to load the appropriate library referenced from the DLL and add
it to your application’s memory space.

Runtime linking, also known as delayed loading, is when the DLL loader will
only attempt to load the relevant libraries’ methods referenced from the DLL when
your application needsit.

The Peon engine that you are working with is using loadtime linking for getting
the library methods into your program’s memory space along with the OpenGL
libraries.

The real magic behind the DLL is contained within the /PeonMain/PeonDLL-
Header. h file found on the CD-ROM, whichis contained in Listing 3.14.

LISTING 3.14 PeonDLLHeader.h

#ifdef PEONMAIN_EXPORTS

#define PEONMAIN_API _declspec(dllexport)
#else

#define PEONMAIN_API _declspec(dllimport)
#endif

This block of compiler preprocessor statements means thatif you are building
the dynamic linked library itself, every object marked with the PEONMAIN_API tag is
exported from the library. Otherwise, your game application using this library will
recognize these objects as being imported from a DLL. In practice, this means that
you only need to #define the PEONMAIN_EXPORTS statement when you are building
the Peon DLL. Thisis already done for you in the Peon project workspace.

CHAPTER EXERCISES

1. Play around with the IniConfigReader object in the loadEngine method.
Add some error checking to only allow “reasonable” window sizes such as
640 Xx 480, 800 x 600 and 1024 x 768.

2. By using the IniConfigReader object, you are helping to make the applica-
tion more data driven. In other words, some of the game parameters can be
modified by the player without needing to recompile the game’s source
code. Explain how this might be helpful for not only you (the program-
mer) but also the customer using your application.

Introduction to SDL and Windows 75

3. For further cross-platform functionality, recode the IniConfigReader ob-

ject into one that is capable of working with XML data.
4. Depending upon your logging preferences, add some methods to the

FileLogger object to record logging messages in HTML format. If you like,
have different colors for different severity levels of your logging mecha-
nism. For example, ifa critical erroris detected and the application needs
to exit, log this message using a red color.

SUMMARY

You have taken another step on the road of game programming. In this chapter, you
learned only what you need to really know about Windows programming in order
to make games using the SDL. You started off by learning how to start up, run, and
shut down the SDL. You also learned how to implementa basic log file writer object
for recording any helpful debugging information, as well as how to load configura-
tion information from the INI file. You finished this chapter by learning about the

design principles behind the Component Object Model and gaining an understand-
ing of the purpose of Dynamically Linked Libraries. In the next chapter, you begin
working on the game engine that fuels your SuperAsteroidArena project.

Introduction to the
Peon Engine

Chapter Goals

® Discuss the use and importance of an engine.
® Introduce the Peon engine and some of the objects that will

benefit game creation.
® Work on the first timebox of the game: foundation and state

management.

ably eager and excited to get more involved in game programming. In this
chapter, you will learn about some of the underlying mechanisms contained

within the Peon engine that you will be working with throughout the remainder of
this book.

A
fter learning some of the SDL basics in the previous chapter, you are prob-

BASIC ENGINE STRUCTURE

A game engineis the core software component of a computer game that typically
handles input, sound, networking, Al, and graphics. Although most game engines
today focus primarily on graphics techniques, they can also handle collision detec-
tion, game object scripting, and dozens of other features.

77

78

ON THE CD

Game Programming in C++: Start to Finish

In other words, not only is a game engine an entity designed to facilitate the
creation of games, it becomes the central heart ofyour game itself. Depending uponthe strength and design of your game engine, you should be able to use it in justabout any project. An analogy ofthis is a car’s engine. Although there are hundreds
of different car models, they all essentially have the same core components such as
an internal combustion engine, spark plugs, carburetor, and so on. The benefit of
this design is that you should have no trouble driving a Gremlin, and then winning
the lottery and stepping into a Porsche 911 Turbo.

Even though you might decide to extend or modify the engine depending upon
game requirements, you should still have a useful core system from which to draw.
Therein lies the fine line you will walk as a game engine designer: create a systemthat is too complex and specific, and it loses the capability to be used in different
projects. But should you design a system thatis too general or ambiguous, then you
might find that you have to assign extra man hours to bring the engine up to pro-ject requirements.

Some ofthe large commercial game developers realize the power and cost ben-
efits behind a properly designed game engine. Although a few studios decide to
spend man hours on creating inhouse engines from scratch for their games,the majority of teams these days simply purchase a license to an existing engineof some kind to provide the functionality for their games’ requirements. The
Quake2/3, Unreal, and Torque enginesare perfect examples of this. The flexibility of
their design and licensing model has allowed for not only the top studios to usethem in their titles, butfairly mid-range and independent companies to succeed as
well. Project managers are definitely seeing the cost benefits of spending the moneyon a good engine. The more man hours spent on fixing up or maintaining an old
or broken engine takes away precious man hours assigned to designing or develop-
ing new game content. Even if you are a lone wolf or small game developer, you can
still reap the benefits of a game engine; instead of spending your precious time
maintaining a giant library of C/C++ code, you could be creating your next title.

Keep in mind that there are no perfect game engines;it is also crucial to be able to
evaluate the limitations ofyour engine before assigning it to a project. For exam-
ple, you might have a great 3D game engine that has components that are tested
and proven, yet the project requires completely different hardware and/or a differ-
ent style of scene management than what the engine was optimized for.

The inexperienced developer might try to force the engine to work for the pro-ject, which is like a brute force approach to fitting a square peg into a round hole.

Introduction to the Peon Engine 79

The more seasoned veteran might decide that with the engine’s known limitations,
it would not be a reccommended choice to use for the project. Naturally, this might
lead to the next step on deciding whether the project could be modified to work
with the engine or whether the game concept itselfis a good idea.

Co One has to find the right balance between tailoring the engine around the applica-
dd tion and tailoring the application around the engine.

INTRODUCTION TO PEON

Throughout this book you will be adding pieces and components to Peon, which is

your game engine. You will also learn how to use it within the context of an actual

game. You learned about the design of the SuperAsteroidArena title back in the de-
sign chapter,so this is where you finally start adding some actual code to the game.) The source code to the engine is located on the included CD-ROM in /Peon, so

ome fee] free to open it and follow along at your leisure.
The Peon engine/framework is a collection of C/C++ objects thatsits on a layer

above SDL and Windows. Rrefer to Figure 4.1 for the Peon architecture.

Your Game

'
Peon

' '
SDL OpenGL

, |
Windows

FIGURE 4.1 Peon architecture.

80 Game Programming in C++: Start to Finish

Although the framework is not intended to be the ultimate game engine solu-tion, it does give you a starting point for learning about game creation along withsome concepts behind engine design.
The ultimate goal of the engine isto try and keep it as lightweight as possible inorder forit to be adaptable to your needs butstill useful enough to allow for rapidapplication development.

ee) This is not meant to be a book on engine programming, but one that focuses onGi aa overall game programming.

INTRODUCTION TO SOME PEON COMPONENTS

Although the documentation provided with Peon will provide more insight to itsuse, you wil learn some of the main components in this section as well as their im-plementation throughout this book.

EngineCore: This is the core component of the engine that you were intro-duced to in Chapter 3, “Introduction to SDL and Windows.” SDLis responsi-ble for registering your application and creating the main window. Anadditional responsibility is to launch the gameinto the main loop whereit isresponsible for processing any events received in the application event queue.It is also responsible for loading and creating the AudioEngine instance, theInputEngine instance, and a SceneRenderer object capable of starting up andshutting down an OpenGL context. Since you want only one instance of thisobject within your program, by design you are implementing this object usingthe Singleton design pattern.
AudioEngine: This core component is responsible for handling/processing thesound engine. It is an interface to the audio subsystem, which allows you to loadand play audiofiles using the SDL_Mixer library for any 2D sounds such as midifiles. Some 3D positional sound effect playback is handled with OpenAL. Sinceyou want only one instance of this object involved with your application, it isimplemented as well within the context of the Enginecore Singleton object.It iscovered in further detail for you in Chapter 11, “Working with Sound.”

Introduction to the Peon Engine 81

scriptEngine: This is the small componentof the engine which will be able to
handle and process scripts that you can read during the launch of a game using
the Lua script library (and virtual machine) ofscript processing. You will learn

more about scripting and this object in Chapter 19, “Introduction to Scripting.”

sceneRenderer: This is another core component of the Peon engine and is re-
sponsible for acting as the interface between your game and the underlying
OpenGL commands that are sent to your video hardware. It encapsulates the

necessary methods for creating, updating, and destroying an OpenGL surface,
and you will learn more about this object along with OpenGL in Chapter 6,

“Creating an OpenGL Renderer.”

sceneTexture: This is a small component designed to act as a container for
texture information used in your game. Accessible through the SceneRen-
derer, this object is responsible for loading and storing texture data that allows
for fast and easy access during the rendering process. You will learn more about
this object and texture manipulation in Chapter 6.

sceneFont: One of the primary channels of communication between your
game and the player is text to the screen, which updates the player on any
situation in the game world. It can display the current players involved in the

game along with any other information you need to display to the player. This

object is a component of some basic font handling and is discussed in further
detail in Chapter 6.
SceneGraphManager: As you learn in Chapter 8, “Scene Geometry Manage-
ment,” one of the fundamental objects or data structures within a useful 3D en-
gine is the concept of a scene graph. The scene graph represents every object
and/or rendering command within your game.It is a data structure used to in-

crease rendering performance, along with aiding in physics and collision de-
tection calculations.

NetworkEngine: Part of the excitement in multiplayer gaming is actually play-
ing against other human opponents. The Networkengine subsystem will be re-
sponsible for handling and processing network events that are sent and received

to and from other players. Built upon the useful ReplicaNet networking library,
this component allows forfast and efficient message communication across the
network. You will learn more about networks and ReplicaNet in Chapter 14,

“Introduction to Networking,” and Chapter 15, “Networking Timebox.”

82 Game Programming in C++: Start to Finish

As you cansee, the core component objects of the engine are mostly designedto be accessed via the Enginecore Singleton object. Remember from Chapter 2,
“Design Fundamentals,” that the Singleton design pattern specifies that oneand only one instance of the object exists. Although perhaps not a perfect de-
sign, it does allow for a looser coupling between these core objects and any ap-plication using Peon. The key to this approachis ease of use, and you will learn
more about the engine as you work through this book.

ParticleEmitter: The purpose of this object is to encapsulate and process acollection of Particle objects for creating a fun and exciting special effect known
as a particle system. Particle systems can be smoke, fire,air, water, or a host ofother special effects.

Shockwave: One of the more interesting special effects for any explosion is the
use of the shockwave to depict a radii of energy emitting from a source vector.As an internal timer progresses, the rings of the shockwave are recalculated to
appearas though they are growing.

BUILDING UPON THE FOUNDATION

When the underlying core objects are created and instantiated within your appli-cation via the EngineCore object, the application kernel then puts itself into a
process phase, which is responsible for notifying your game of whatis happeningboth within the engine and within the game world itself.

Managing State Information

No matter how large or small your world is, there is always the need to track state
information within the game. A state can be defined as an updated snapshot of theobjects contained within your game world.

In other words, think of the responsibilities of a toggle light switch. The switch
can only be in one of two states: on or off.

During the updating phase of your game, the computer will make any neces-
sary calculations depending on the currentstate of the world. In most game pro-jects this entails the use of a switch statement as demonstrated in Listing 4.1.

Introduction to the Peon Engine 83

LISTING 4.1 switch Statement for State Processing

switch(current_state)

{

case MAIN_MENU_STATE:

//do any main menu related tasks such as displaying the main

//menu,
//responding to input events generated by the mouse, respond
//to any button clicks, etc.
break;

case PLAYER_ACTIVE_STATE:

//do any related task for playing the main body of the game.
//Update the player's position in the world, let him shoot
//stuff, run around and basically try to save the planet
break;

case PLAYER _DEAD_STATE:

//do anything related to the player's death. Maybe display
//a dying animation or just a simple "game over" message
break;

//snip
}

Although this can be effective enough for a game with only a small quantity of
possible states, there can be many complications when adding new states to the

game. In mostcases, these switch blocks also become rather large and increasingly
difficult to track or debug.

:

Within the Peon engine, however, the Application and IApplicationState ob-

jects are used heavily to define and encapsulate different states that compose your
game. To add a new state to your game, you need to derive a new instance of the

IApplicationState object and provide definitions for a few overloaded methods.

Working on the First Timebox

It is time to work on the first timebox for the SuperAsteroidArena project. Check out
your SuperAsteroidArena design document from your CVS repository and take a look

at the first timebox defined: laying the foundation and basic state management.
You will first need to draft a list of requirements for this timebox. It does not

need to be anything complex and could appearas the following:

84 Game Programming in C++: Start to Finish

® Initialize and start up the application using Peon and SDL.
® Create some IApplicationState containers that you will fill in as development

progresses.

Based on your introduction to SDL in Chapter 3, “Introduction to SDL and
Windows,” the first requirement should already be in place. You have enough
background to load your application with an INT configuration file and present anamed main window using SDL.

You should now think ofa list of possible states in which the SuperAsteroid-
Arena project can run. Because you are using a more iterative Agile design approach,this list does not need to be written in stone and can be updated as you progressthrough the project, depending upon any feedback from yourself or other testers.You might decide the game needs morestates, or you might think of a feature in the
game that you really wantto support. Regardless, a first attempt at the list of statesthe SuperAsteroidArena game can work through is listed here:

LogoState: This state is responsible for loading and presenting your own
company logo and perhaps to play a small musical introduction or jingle.
MainMenuState: This stateis responsible for loading and presenting any re-
sources needed to have an operational main menu. Since it is the first “real”
screen of your game that the player confronts, you should try and create some
interesting background effects. You might also decide to simply have a runningdemo of your game displaying in the background while you present the main
menu to the player in the foreground.
RunState: This state is used to contain the game logic, which is where the
game will spend the majority of its time. When you are playing the game,it is
in this state.
QuitGameState: The purpose of thisstateis to gracefully exit the application.
For most shareware games, you can use thisstate to present any further infor-
mation to the player including instructions on how to buy your game, where toview further information, and so on.

When you finish with this current timebox, rememberto evaluate what you are
working on.

Creating the New Instances of IApplicationState
Now that the basic graphics device is set up and created, you can begin this timebox by
creating some new instances of the IApplicationState interface as previously outlined.

As you will learn, when new instances of this object are created, they must be
added to the 1Application object, which functions as a state manager. The state

Introduction to the Peon Engine 85

manager’s purpose is to contain the list of every IApplicationState instance in the

game. It is also responsible for switching between states and cleaning them up when

the application is terminated. Listing 4.2 details how to create a new instance of the

IApplicationState interface.

LISTING 4.2 LogoState Definition

Jo
* This state is responsible for presenting the developer's Company
* Logo to the player. This can also be a simple animation accompanied
* by some music or even nothing at all.
x)
class LogoState : public peon::IApplicationState
{

public:
/** Constructor */
LogoState();
/** Destructor */
~LogoState();
/** Overidden method to update this state
* @param elapsed_time — The time between clock ticks
*/
void onUpdateState(float elapsed_time);
/** Overidden method to render this state */
void onRenderState();

//snip!
}s

Taking a view of the design document for SuperAsteroidArena again, you can

see that within this LogoState object you need to display your company logo and
play a small midi file. After roughly five to eight seconds, the game will switch itself

into the main menu state. In the future, you can replace the LogoState with an intro
movie, or perhaps some professionally recorded music. Because you have already
learned some of the tasks that need to be done with this state in previous chapters,
there is more benefit from taking a quick look at the code responsible for updating
the LogoState object. Listing 4.3 demonstrates this.

LISTING 4.3 LogoState::onUpdateState(float elapsed_time)

//snip!
static float current_time = 0.0f;
static bool first_Pass = true;

86 Game Programming in C++: Start to Finish

if(first_pass)

{

//It's the first time through this update cycle in this state.//Initialize or do any task that needs to happen once per//state. For this state, simply begin to play the midi file.first_pass = false;

current_time += elapsed time;
if(current_Time > 5.0f)

{

/ lout of here.switch to our next state
EngineCore: :getSingleton().getApplication().setState(

MAINMENU_STATE);
}

//snip!

Implementing the other states should be just as straightforward during this
timebox. Please referto the project’s sourcecode in the / SuperAsteroidArena direc-
tory on the CD-ROM. You will be continuously adding to these IApplicationState

Gricsiin

mE instances throughout the rest of this book.

Timebox Evaluation

You are nearing completion ofthis phase of the design. Take a quick look at thedocument with any notes you might have created for this timebox. Objectively an-
alyze whether you are satisfied with what you have produced thus far, even if youfeel that the implementation done in this timebox has not really accomplishedmuch.

If you would like to add or modify the states that the game can run in, then feel
free to inject them into the game along with updating the design document.

Also be sure to start familiarizing yourself with some of the Peon documenta-
tion. As you begin to add to the engine, you will become more familiar with its
workings and will be able to leverage it in any future application.

CHAPTER EXERCISES

1. Understand the process of adding new state objects into the game world.
With your own experience, decide whether this is a better solution than
simply processing every state in one block of code using a switch statement.

Introduction to the Peon Engine 87

2. Take a look at the definitions of some of the other game state objects de-

rived from the IApplicationState interface. Feel free to either introduce or
subtract methods from the IApplicationState interface that do not help

your own design or can possibly do more.

SUMMARY

Throughout this chapter, you discovered the importance of an engine or frame-

work that you can use as a backbone for your game objects. By creating a small layer
above the SDL library, you can create some useful middleware that is flexible

enough to handle just about any game application you want to make with it. You

also were introduced to the Peon engine design basics, which can help do some of
the necessary management work for you,as you get on with the content creation of

your game.
There is a lot moreto learn, but you are making good progress. Now you move

on to learning some of the important fundamental mathematics behind most
games today. If you already possess a strong background in mathematics, you can

probably skip the next chapter. Otherwise, those who require a math refresher

should flip through the following chapter.

He

ALTE

; Graphics Programming
Mathematics

Chapter Goals

® Discuss the coordinate system used by OpenGL.
Discuss the Fixed Function Geometry Pipeline.
Introduce and discuss vectors.
Introduce and discuss matrices.
Describe the three coordinate transformations possible: scaling,
translation, and rotation.
Introduce and understand how to manipulate the camera.
Introduce a discussion on Quaternions.

cover some basic 3D concepts. Most game programmers tend to shy away
from the mathematics involved in 3D graphics programming in general, but

the majority of the concepts and operations you need to perform are fairly simple

to understand despite the hundred years of mathematics behind them.

Be you can dive head-first into some API-specific code,you first need to

THE CARTESIAN COORDINATE SYSTEM

No matter which graphics API you use, the objects you will need to manipulate in

the scene must have some kind of orientation and position representation. To keep

things simple for graphics programmers, you will make heavy use of the Cartesian

Coordinate System.

89

90 Game Programming in C++: Start to Finish

The Cartesian Coordinate System segments space into three seperate axes: the
horizontal (x), the vertical (y), and the depth axis (z). The origin (or center) of the
world lies at coordinates (x,,2):(0, 0, 0).

The left-handed coordinate system, which is what Direct3D uses by default, is
one in which the positive z-axis points into your screen. Conversely, the right-
handed coordinate system, used by OpenGL, is one in which the positive z-axis
points out of the display. This is demonstrated in Figure 5.1.

Left-handed Right-handed
Cartesian Coordinates Cartesian Coordinates

Y
|

Y

FIGURE 5.1 The left- and right-handed coordinate systems.

7"For the Peon toolkit, you will stick to a right-handed coordinate system for object(A positioning which coincides with the one used by OpenGL.
NOTE

FIXED FUNCTION GEOMETRY PIPELINE

It is not magic that allows you to position and orientate your world objects, but
something called a coordinate transformation. Every object within the game world

Graphics Programming Mathematics 91

is represented on an atomic level by a vertex containing the x,y,z coordinates. The

vertex must pass through three types of transformations before you see the final

product on the screen. On a higher level, these transformations on the vertex take

place in the Fixed Function Geometry Pipeline (FFP) shown in Figure 5.2.

Transformation Pipeline

World
i Transformation

mammmmmmemsemmannannn. -

View L

Transformation
Projection

Transformation =

Rasterizer

FIGURE 5.2 Fixed Function Geometry Pipeline.

World Transformation: Usually the vertex (or vertices for an object) is de-
fined with a local coordinate system. For example, when you open your favorite

modeling tool to create an object, you are manipulating this object within its

own local coordinate system. The world transformation stage is where the ver-
tices are converted into the coordinate system of the game world.

View Transformation: When planning each scene, you also need to position
your viewpoint (the camera position). After the viewpointis established, the
view transformation stage is where every world vertex is oriented with respect
to the camera.
Projection Transformation: Now that the world’s vertices are organized with

respect to the camera viewpoint, you need to scale the vertices to create a feel-

ing of depth between the camera and every object in the scene. At this stage of
the graphics pipeline, you have the choice of two projections:

Perspective Projection: Vertices that are positioned close to the camera ap-
pear larger than those vertices that are positioned farther away. This is the

92 Game Programming in C++: Start to Finish

view projection used by any First Person Shooter game or something in
which a feeling of movement through an interactive world is needed.
Orthographic Projection: This type of projection (an affine projection) is
where the feeling of depth is totally removed. Uses of this projection type
are most common in things like CAD tools or for displaying a menu system
to the player.

Clipping and Viewport Stage: The final stage ofthe pipeline finishes off by
deciding which vertices are actually visible and which are positioned beyond
the confines of your viewing area (the view frustum). Vertices that are marked
as unviewable are culled from the scene.

INTRODUCTION TO VECTORS

A mathematical entity that describes a direction and magnitude such as a forcelike
acceleration or gravity is known as a vector. Vectorsare also used to represent a po-
sition in a 3D coordinate system. The Peon library has an optimized vector object
for you to use called vectors. Vectors are an important component to graphics pro-
gramming. For a quick snapshot of the class definition, please browse through the
Vector3.h file included with the Peon project shown in Listing 5.1.

LISTING 5.1 Vector3 Definition

class PEONMAIN_API Vector3
{

public:

float x;
float vy;

float z;

Vector3 (void)
{

Xx = 0.0f;
Vy .=-0.0F;
z = 0.0f;

}

static Vector3 crossProduct (const Vector3 &v1, const Vector3 &v2)
static float dotProduct (const Vector3 &v1, const Vector3 &v2);
static float distance(const Vector3 &vi, const Vector3 &v2);

J

Graphics Programming Mathematics 93

Common Vector Operations

For 3D graphics programming, proper vector manipulation is a crucial aspect with

many applications in a Cartesian Coordinate system. To begin with, there will be

cases in which you will need to calculate the length of the vector (the magnitude).
The magnitude of a vector is represented mathematically by a vertical bar on either
side of the vector as shown in Equation 5.1.

|A| = J Ax + Ay’ + Az? (5.1)

When you begin manipulating vectors in 3D graphics, it is important that every
vector has been reduced to a length of 1.0. This is known as normalization, andits
usage will become more apparent further on. To normalize the vector, you simply
divide the vector a by its own magnitude (see Equation 5.2).

A
| A]

a= (5.2)

In manysituations in graphics programming you will need to find a perpen-
dicular vector (the normal vector), given only two other vectors that lie on the same
plane. This is known as the cross product of two vectors, and is very useful in light-
ing, physics, and collision detection calculations, among other things. See Equation
5.3,

N= AxB=(AB AB ,AB ~AB,AB ~AB) (5.3)

Listing 5.2 demonstrates how to perform a cross-product calculation within the

Vectors object.

LISTING 5.2 Vector3::crossProduct

Vector3 Vector3::crossProduct (const Vector3 &vi, const Vector3 &v2)

{

vector3d vCrossProduct;

vCrossProduct.Xx
vCrossProduct.y
vCrossProduct.z

vi.y * v2.z = vi.z * v2.y;
vi.z * v2.x - vi. x * v2.2;
vi.x * v2.y - vi.y * v2.X;

return vCrossProduct;

94 Game Programming in C++: Start to Finish

Another important operation involved in graphics programming is the dot
product. There are two possible equations that define the dot product. Equation 5.4
outlines the official algebraic definition of the dot product, whichis the sum ofthe
products of each corresponding component to produce a scalar.

AeB=AB +AB +AB, (5.4)

The other use for the dot product is to calculate the angle between two vectors
as defined in Equation 5.5. It becomes the product of the magnitude ofthe vectors
and the cosine of the angle between them.

AeB= |4]||B]cos® (5.5)

In terms of practical code, Listing 5.3 demonstrates how this is done within the
Vector3 object.

LISTING 5.3 Vector3::dotProduct

float Vector3::dotProduct (const Vectors &v1, const Vector3 &v2)
{

return(vi.x * v2.x + vi.y * v2.y + vi.z * v2.2)s
}

You will learn more about using the dot productlater on, butits primary pur-
pose with respectto graphics programmingis to determine the perpendicular vec-
tor (known as the “normal vector”) from two other vectors.

Another useful method that you can add to your vector3 object is how to find
the distance between two vectors(see Listing 5.4).

LISTING 5.4 Vector3::distance

float Vector3::distance(const Vector3 &v1, const Vector3 &v2)
{

float dx = vi.x - v2.x;
float dy = vi.y - v2.y;
float dz = vi.z - v2.z;

return (float)sqrt(dx * dx + dy * dy + dz * dz Vs

}

As you use more ofthe Vectors object in the Peon engine and throughout the
rest of this book, you will become more accustomed to how the object works and
whatit is doing,

Graphics Programming Mathematics 95

INTRODUCTION TO MATRICES

Both the OpenGL and Direct3D API are optimized to use matrices to position the
object/point/vertex within the gameworld. A matrix is a two-dimensional array of
numbers with a set number of rows and columns. You normally define the dimen-
sion of a matrix by the mxn notation. For example, if you had a matrix with one
row and three columns, you would say that you had a 1 x 3 matrix.

All graphics hardware is optimized for using 4 x 4 matrices.

NOTE

THE OPENGL MATRIX STACKS

One ofthe key design principles behind OpenGL is the proper manipulation of the
three matrix stacks available to us: the modelview, projection, and texture matrix
stacks.

The modelview matrix stack can hold up to 32 4 x 4 matrices, with the pipeline
using the top matrix on the stack. As with any other stack, you can push and pop
various matrices, in orderto create complex geometry out of simple, atomic coor-
dinate transformations. Transformations of your modelview matrices are respon-
sible for placing and orientating your objects within the gameworld.

The projection matrix stack can hold two 4 x 4 matrices, with the pipeline using
the topmost matrix on the stack to perform any projection transformations to the
objects in the pipeline. Transformations ofthe projection matrix are responsible for
defining the viewing volume and clipping planes of your scene.

The texture matrix stack can hold two 4 x 4 matrices as well and is responsible
for the manipulation of texture coordinates before any texture mapping occurs.

In each case, the OpenGL context uses the glPushMatrix and glPopMatrix func-
tions for pushing and popping matrices onto any of the matrix stacks, which can be

a useful practice to preserve the contents of the matrix stack. This will become
clearer in the examples.

The Peon engine contains a matrix object that can be used for some calcula-
tions. See Listing 5.5 for an outline to the Matrix44 object.

LISTING 5.5 Matrix44 Definition

class PEONMAIN_API Matrix44
{

public:

96 Game Programming in C++: Start to Finish

float m[16];

Matrix44() { identity(); }

Matrix44(float m0, float m4, float m8, float mi2,
float m1, float m5, float m9, float mi3,
float m2, float m6, float m10, float mi4,
float m3, float m7, float mii, float mi15);

void identity(void);
void scale(const Vector3 &scale);
Matrix44 operator + (const Matrix44 &matB);

bs

Identity Matrix

A useful matrix within graphics programmingis the basic identity matrix. Simply
put, the values along the main diagonal are 1, while every other value is0. Identity
matrices can be any dimension, but both row and column sizes must be equivalent
(see Equation 5.6). For example, an mxn where m = n.

©

OO

OO

=

oo

=

Oo

QE

Ney

Cy

LED

SO

(5.6)

Listing 5.6 demonstrates how the Matrixaa object is initialized as an identity
matrix.

LISTING 5.6 Matrix44::identity

void matrix44::identity(void)

{

m[0]=1.0f; m[4]=0.0f; m[8] =0.0f; m[12]=0.0f;
m[1]=0.0f; m[5]=1.0f; m[9] =0.0f; m[13]=0.0F;
m[2]=0.0f; m[6]=0.0f; m[10]=1.0f; m[14]=0.0f;
m[3]=0.0f; m[7]=0.0f; m[11]=0.0f; m[15]=1.0F;

}

Matrix Addition and Subtraction

Graphics Programming Mathematics 97

To perform matrix addition and subtraction, you simply take each element of one
matrix and add or subtract it with the same positioned element in the next matrix.
See Equations 5.7 and 5.8.

oxy

5:2
6

Matrix A =
5

%. 5

3 2

Matrix A + B=

tion is commutative.

NN

WN

C0

=

5+5
5+6
9+5
3+7

Matrix B =

2+5
6+5
5+6
2+6

1+5
7+6
445
245

~1

WBN

WA 55 5

5 6 5
5.7

6.5. 4
(5.7)

6 5 4

1+5
8+5 5.8
5+4

(5:8)

2+4

Each matrix involved in addition or subtraction must be the same dimension.
While both addition and subtraction operations are associative, only matrix addi-

For example, M+ (N—-0O)=(M+N)-Obut M—-N!=N-M.
Listing 5.7 shows you how the + operator is overloaded within the Matrix44

object.

LISTING 5.7 matrix44::operator + (const matrix44& operand)

matrix44 matrix44::operator + (const matrix44 &matB)

{

matrix44 result;
result.m[O0]
result.m[1]
result.m[2]
result.m[3]

result.m[4]
result.m[5]
result.m[6]
result.m[7]

m[0]
m{1]
m[2]
m[3]

m4]
m5]
m[6]
m7]

+

+

+

+

+

+

+

+

matB.
matB.
matB.
matB.

matB.
matB.
matB.
matB.

m{0];
m1];
m[2];
m{3];

m[4];
m[5];
m[6];
m{71;

Game Programming in C++: Start to Finish

result.m[8] = m[8] + matB.m[8];
result.m[9] = m[9] + matB.m[9];
result.m[10] = m[10] + matB.m[10];
result.m[11] = m[11] + matB.m[11];

result.m[12] = m[12] + matB.m[12];
result.m[13] = m[13] + matB.m[13];
result.m[14] = m[14] + matB.m[14];
result.m[15] = m[15] + matB.m[15];

return result;

Matrix Multiplication

NOTE

Although easy to do, matrix multiplication can get confusing if you are not used to it.
If your memory is foggy on matrix multiplication, feel free to refer back to this area
as often as you want. The only rule about multiplication is that the inner product of
the two matrices must be identical. For example, A; X Bs;is a legal multiplication, as
the number of columns of matrix A is identical to the number of rows of matrix B,
whereas A;, X Bs, is not a legal multiplication, as the inner product (the number of
columns of matrix A and the number of rows in matrix B) is not identical.

After you have determined that the multiplication can proceed, the dimension
of the resulting matrix is the outer product of the two matrices. For example, since
A,3 X Bs is a legal multiplication, the resultant matrix is C,5. See Equations 5.9 and
5.10.

. 12 ;
5596

Matrix A = Matrix B = (5.9)
3 4 7 8

:
1+ 5427 16+ 2-8

Matrix AB = (5.10)
3-5+4-7 3-6+4-8

Remember that you multiply each element of row A by each element ofcolumn B.

Also, never forget the basic order of operations, meaning you calculate the multi-
plication operands before the addition.

Graphics Programming Mathematics 99

Coordinate Transformations

Because you can combine transformations by the help of matrix multiplication,
you just need to remember that matrices within graphics programming are of a
4 x 4 dimension. Only three transformations are involved in graphics program-
ming: scaling, translation, and rotation.

Scaling Transform

This is the act of applying a scalar value to each element in the matrix. This trans-
formation can be useful if you want to grow or shrink your vertices. In 3D graph-
ics, because you normally use the coordinates x,y,z to define a vertex, the scaling
factors appear as sx, sy, sz. See Equation 5.11.

S 0 0 00 0 0
= Y (5.11)

0 0 “Sz 0

0 "=O Dera

Because you are working with homogenized matrices, the last entry on the main
diagonal (Sy) is always 1. As you will learn later, this makesit easier to combine
several matrices into one final product.

Listing 5.8 demonstrates how to create a scaling matrix with the Matrix44 ob-
ject from the Peon library.

LISTING 5.8 Matrix44::scale(const Vector3 &scale)

void matrix44::scale(const Vector3 &scale)

{

m[0] = scale.Xx;
m[5] = scale.y;
m[10] = scale.z;
}

Translation Transform

Translation can be thought of as moving a point from one position in space to an-
other. To perform translation, you simply add the delta values of each axis to the
original values ofthe point being translated. See Equation 5.12.

100 Game Programming in C++: Start to Finish

Lo220%::0: 7:0

Resi oth 9 8
(5.12)

0: 0:4:1:0
Tx Ty Tz 1

Note that in graphics programming, the point P is always represented in ho-
mogenous coordinates. For example, P(x, y,z, 1). This is important, asit allows you
to use matrix multiplication to combine several transformation matrices into one
final product. If you did not have the point in homogenous coordinates, then many
of your transform matrices would violate basic matrix operation rules.

A sample translation matrix can be created by the following Peon code pre-
sented in listing 5.9.

LISTING 5.9 Matrix44 Translation Example

void Matrix44::translate(const Vector3 &trans)

{

m[12] = trans.x;
m[13] = trans.y;
m[14] = trans.z;

}

Rotation Transform

The final transformation type is the most complex transformation among the big
three. You can scale a point to any size and can now move this point anywhere in
3D space, so the final operation that you are allowed to perform is to rotate around
a given axis.

The following rotation matrix transforms the point (x, y, z) around the x-axis
to form the new point (x, y’, 2’). See Equation 5.13.

0 0

R.=

0

cos@ sin 0
(5.13)

0

1

1

0

0 —sin@ cos
0 0 0

Listing 5.10 details this rotation in the Matrix44 object.

Graphics Programming Mathematics

~~
101

LISTING 5.10 void Matrix44::rotate_x(const float &angle)

void Matrix44::rotate_x(const float &angle)

{

//the given angle is in degrees. You need to convert
//it to radians.
float s = sin(PEON_DEGTORAD(angle));
float ¢ = cos(PEON_DEGTORAD(angle));

m[5] = oc;

m[6] = s;
m[9] = -s;
m[10] = cC;

}

The following rotation matrix transforms the point (x,y,z) around the y-axis to
form the new point (X’, ¥’, 2’). See Equation 5.14.

cos@ 0 —sin@ 0

0 1 0 0R= (5.14)
sin@ 0 cos@ 0

0 0 0 1

Listing 5.11 details the rotation around the y-axis using the Matrix44 object.

LISTING 5.11 void Matrix44::rotate_y(const Real &angle)

void Matrix44::rotate_y(const float &angle)

{

float s = sin(PEON_DEGTORAD(angle));
float ¢ = cos(PEON_DEGTORAD(angle));

m[0] = ¢cC;

m[2] = -s;
m[8] = s;
m[10] = c;

}

The last rotation matrix transforms a point (x,y,z) around the z-axis to form
the new point (X’, y’, 2’). See Equation 5.15.

102 Game Programming in C++: Start to Finish

cos@ sin@ 0 0

Rois
—sin@ cos@ 0 0

(5.15)
0 0 1 0

0 0 0-1

Note that in these three rotation matrices, the greek letter Theta represents the
angle of rotation that you want to perform in radians.

OTE
In the Peon engine, the matrix rotation around the z-axis is detailed in Listing

5.12.

LISTING 5.12 void Matrix44::rotate_z(const float &angle)

void Matrix44::rotate_z(const float &angle)

{

float s sin (PEON_DEGTORAD(angle));
float ¢ = cos(PEON_DEGTORAD(angle));

m[0] = c;
m1] = s;
m4] = -s;
m5] = c;

Matrix Concatenation

It is very important that the matrices involved in your calculations are in the 4 x 4
dimension (homogenous coordinates), as you can then take several transform ma-
trices and combine them into one matrix, which represents the final transform that
you can apply to a vertex in the scene. This can improve some efficiency in any per-
formance critical code, as you can combine several matrix operations into one. This
is a process called matrix concatenation, which is defined as shown in Equation 5.16.

C=M-M,-M,_ -M, (5.16)

In this formula, C represents the final matrix product of the concatenation of
the M, to M,, matrices.

NOTE

Graphics Programming Mathematics

~~
103

Remember again that matrix multiplications are not commutative, so care is

needed to ensure that the proper orderis followed. A rule of thumb that is common
in graphics programming practice is to work from the left to the right (also called
the left-to-right rule). The visible effects of the final composite matrix C occur in a
left-to-right order.

After all ofthis introduction to matrices, you should be aware ofa little secret: the
Peon library does the math for you internally. It still is useful to understand how
matrices work, as there are times when performance critical matrix optimizations
are needed.

For another quick example on working with the OpenGL matrix stack to
demonstrate how to calculate the resultant matrix after a series of operations, as-
sume that you have an object positioned at the world origin (0.0f, 0.0f, 0.0f). You
want to double the size ofthe object, rotate it around the x-axis by 30 degrees, and
then translate the object to position 10 units in the positive y-axis and 10 units into
the screen on the z-axis (0.0f, 10.0f, —10.0f). Take a look at listing 5.13 to see how

you would compute the final matrix with OpenGL.

LISTING 5.13 A Real-World Example

glPushMatrix(); //push the current matrix onto the stack
glLoadIdentity(); //load an identity matrix
glScalef(2.0f, 2.0f, 2.0f); //scale the object by 2.0f in each axis
glRotatef(30.0f, 1.0f, 0.0f, 0.0f); //apply a rotation around the

X-axis
//by 30 degrees
glTranslatef(0.0f, 10.0f, -10.0f); //translate 10 units into the

screen
//render the object
renderTARDIS() ;

glPopMatrix(); //restore the matrix from the stack

BASIC CAMERA/VIEW ORIENTATION

When learning about Fixed Function Pipeline, you learned the concept of the view

transformation, which orients each point with respect to the scene camera.
A view transformation matrix contains three vectors: the eye vector, the lookat

vector, and the up vector.

104 Game Programming in C++: Start to Finish

Eye vector: Thisis the vector representing the x,y,z position of your eye in the
scene.
Lookat vector: This is the vector representing the x,y,z position of the point
in space at which you are looking. .

Up vector: Thisis the vector representing the x,y,z “Up” direction. In most
cases, this vector should be always set to (0.0, 1.0, 0.0). The positive y-axis rep-
resents the upward direction.

Listing 5.14 provides more details.

LISTING 5.14 Creating a View Transformation Matrix with gluLookAt

Vector3 vecEye(0.0, PRO, -1.6) 3; //our viewpoint
Vector3 vecLookAt(0.0, 0.0, -10.0); //what we are looking at
Vector3 vecUp(0.0, 1.0, 0.0); //the "up" direction
gluLookAt(vecEye.x, vecEye.y, vecEye.z,

vecLookAt.x, vecLookAt.y, vecLookAt.z,
vecUp.x, vecUp.y, vecUp.z);

Projection Transformations

One of the last stages of the Fixed Function Pipelineis the Projection Transforma-
tion stage. Remember from the previous section that you have the ability to set the
pipeline into two projections: perspective or orthographic.

Perspective
The perspective projection is the one most commonly used for games today, as it
provides the depth within the scene, to provide a feeling of reality. But do not as-
sume that only First Person Shooters or Real-Time Strategy games can be made
with the perspective projection. Even platformer type titles can be done with a per-
spective viewpoint. Listing 5.15 documents this process using OpenGL.

LISTING 5.15 Perspective Transformation Matrix with OpenGL

//calculate the aspect ratio
float fAspect = (Glfloat)width / (Glfloat) height;
//switch matrix mode to work with the projection stack
glMatrixMode(GL_PROJECTION);
glLoadIdentity();

Graphics Programming Mathematics

~~
105

//calculate a new perspective matrix using the aspect
//ratio and the near and far clipping planes
gluPerspective(45.0f, fAspect, 1.0f, 100.0f);
//switch back to the modelview matrix stack
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

Orthographic
The orthographic projection is also very useful, as it allows you to enable the

pipeline to removeall feeling of depth from the rendered scene. This can be useful

for certain effects you might wantto create or for use for the entire game like a plat-
former or other 2D type title. One other popular use ofthe orthographic projection
is for displaying the GUI, which is one wayfor the player to interact with the game.
Listing 5.16 shows how this is done with OpenGL.

LISTING 5.16 Creating an Orthographic Projection with OpenGL

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
//Calculate an orthographic matrix using the width and height
//of the window

gluOrtho2D(0, (Glfloat)width, 0, (Glfloat)height);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

Create a Basic Camera

With this introduction to the world of basic view manipulation, you have learned

enough to create your own camera object. Within the Peon library, your default

viewpoint manipulatoris interfaced through the sceneCamera object which is de-

fined in Listing 5.17.

LISTING 5.17 /PeonMain/SceneCamera.h

namespace peon
{

FEY

* This object is our basic camera object for the Peon
* library. It is only meant to have basic functionality.
*4

PIR

AT

106 Game Programming in C++: Start to Finish

class PEONMAIN_API SceneCamera
{

public:
SceneCamera() ;

~SceneCamera();
J **
* This method just sets our camera/view into a perspective

projection
*/
void setPerspectiveProj(float fAspect, float z_min,

float z_max);
]**
* This method is responsible for setting the position of the

viewer
*/
void setViewMatrix(Vector3& vecEye, Vector3& vecLookAt,

Vector3& vecUp);

b
}

As you can see, you are only creating some wrapper utility methods around the
projection fundamentals. For nearly every 3D scene in your game, you will need to de-
fine your view matrix as a perspective projection. Then you only need to adjust your
view transformation matrix of the pipeline with the help of the setviewMatrix method.

Gimbal Lock

Currently, you can store the set of rotation angles which specify the x, y and z rota-
tions around the axii in a Vector3 data structure. For example, Vector3(90.0f, 0.0f,
0.0f) is used for a rotation of +90 degress in the x-axis. In mathematics, this is
known as an Euler angle. In other words, Eular angles can be represented with a
single vector data structure such as a Vector3 object. Gimbal lock is a problem as-
sociated with Eular angles when you attempt to concatenate multiple transforms
into the final product matrix. It is possible for the rotation around one axis to be
mapped onto a rotation around another axis, therefore potentially making it im-
possible to actually rotate around the desired axis.

For example, your object wishes to rotate around the z, y and x axis to produce
the final orientation. The rotation around the z axis will run smoothly, along with
the rotation aroundthe y axis. However, after this second rotation, your x axisis
now mapped onto your z axis. Therefore, any rotation in the x axis will instead
rotate the object around the z axis. Worse yet, it is now impossible to rotate your
object around the desired x axis!

Graphics Programming Mathematics

~~
107

This problem can be solved by using quaternions.

Quaternions

Mostly used for either interpolating between two vectors, or manipulating your
scene camera, quaternions are a useful mathematical tool to provide a mechanism

to rotate any object by any angle around any arbitrary axis. The final rotation is still

calculated using matrix operations; however, instead of multiplying the rotation
matrices together, quaternions representing the axes of the rotation are multiplied
together. This final quaternion product is then converted to the proper rotation
matrix.

Within the Peon library, the uaternion object handles these operations and is

defined in the header file quaternion.h defined in Listing 5.19.

LISTING 5.19 /PeonMain/Quaternion

class Quaternion
{

public:
float m_w, m_x, m_y, m_z;

public:
Quaternion();
~Quaternion(};
//snip

bs

A quaternion is defined as a four-tuple entity composed of normal and imagi-

nary numbers. There are two equations that can define a quaternion, shown in

Equations 5.17 and 5.18.

q=w+xi+ yj+zk wherei,jand kare imaginary numbers (5.17)

q= [w, v] where w represents a scalar value and v represents a vector (5.18)

Determining the magnitude of a quaternion is similar to what you have already
learned about vectors. You only need to extend the equation to handle the extra

component. See Equation 5.19.

magnitude = \|w* +x" + y* + 2° (5.19)

To normalize a quaternion, you apply the same operationsthat you did for the

vector. Namely, you would divide each component by the magnitude of the whole

quaternion.

108 Game Programming in C++: Start to Finish

By far the most important operation when using quaternionsis multiplication.
As you will see, the product of two quaternions does actually help you better posi-
tion the camera within the game world.

Letting QI and Q2 be their own respective quaternion, then their multiplica-
tion would be similar to Equation 5.20.

@Q* QZ), = (ww, — XX, = NY) ~ %3,) (5.20)

Similar to matrix multiplication, the product of Q1*Q2 is not equal to Q2*QI. In
other words, quaternion multiplication is not commutative.

woTE

A quaternion not only stores an axis but also a specific amount of rotation
around the axis. Once you calculate the final rotation transformation matrices con-
taining quaternions, it is a trivial matter to orient your camera or any other object
within the game world to prevent gimbal lock.

Basic Quaternion Algorithm
The basic algorithm to using quaternions for your rotational matrices is straight-
forward:

1. Use a quaternion to represent your rotation.
2. Generate a temporary quaternion which is the change from the current

orientation to the new orientation.
3. Multiply the temporary quaternion created in Step 2 with the original

quaternion from Step 1.

4. Convert this product quaternion to a matrix, which will act as the rota-
tional matrix for positioning your vertices in the scene.

When you have finished multiplying the two quaternions together,the final ro-
tation transformation matrixis calculated from the product quaternion. See Equa-
tion 5.21.

w? +x’ = y’— 2 2xy —2wz 2xz + 2wy 0

2xy + 2wz w= x* + y* — 2° 2yz —2wz 0
2xz —2wy 2yz—2wz w'=x*-y' +z 0

0 0 0 1 (5.21)

Graphics Programming Mathematics

~~
109

CHAPTER EXERCISES

1. After browsing through both the vector3 and Matrix44 objects in the Peon

library, feel free to optimize them in any way possible. Hint: Research the

inline keyword.
2. Although you learned about gimbal lock and its effect on your objects’

final orientation, research some possible solutions for this problem, in-

cluding how to modify your SceneCamera object to use quaternions.
3. You should always maintain your camera position code applied to the

GL_PROJECTION matrix stack. To understand why, manipulate the camera
while in the GL_MODELVIEW matrix stack and test the results for yourself.

SUMMARY

Now that you have learned the fixed function geometry system of graphics pro-
gramming theory, it is much easier to picture and understand just how a point (or

vertex) moves through the pipeline and is displayed in the 3D world. You have also

learned how to manipulate the key stagesofthis pipeline to help produce the results

needed via various matrix operations. You were introduced to vector and matrix

concepts that attempt to make your 3D programming life a little bit easier. By ma-

nipulation of the camera’s eye and looking at vector components, you can also

view the scene from any point in space.
You were also introduced to quaternions, which enable you to calculate object

rotations in your game world, without the worry of gimbal lock. Now that you have

a mathematics foundation to build upon within graphics programming, in the next

chapter you learn about OpenGL, which is a very popular graphics application in-

terface (or API).

Creating an OpenGL
Renderer

Chapter Goals

Provide an overview of OpenGL.
Introduce the basics of creating and using an OpenGL context.
Introduce the OpenGL internal state machine.
Introduce rendering primitives and basic texture mapping.
Provide information on how to use display lists and rendering text.
Introduce how to add fog effects to your scene.

corporated during the late 1980s and quickly becamea leading 3D graphics
APL It was designed from the beginning to be cross-platform, simple to use,

and fast. It was first released and optimized for the high-end workstations, but has

gradually migrated to the consumer level thanks to a shared interest among leading

graphics developers and video hardware vendors. The OpenGL language specifica-
tion is not under control by one party butis a collaborative piece of work with con-
tributions by some major hardware manufacturers and other industry leaders.

Together, they form the OpenGL Architecture Review Board (ARB), and as of this
book’s writing, havejust released the OpenGL 2.0 specification.

Te Open Graphics Library (OpenGL) was architected by Silicon Graphics In-

111

112 Game Programming in C++: Start to Finish

Within this chapter, you will start adding and working with components from
the Peon engine in order to gain an understanding of the specifics behind manip-
ulating the OpenGL pipeline.

HOW DOES OPENGL OPERATE?

To the uninitiated graphics programmer, it is important to understand what OpenGL
is and whatit can do for you. OpenGL is a highly procedural graphics API. In other
words, rather than relying on the programmerto describe how a sceneis structured,
you are required to physically define the rendering steps necessary to create the ob-
jects and environment for your scene. These rendering steps or methods involve ma-
nipulating the API, which includes a few hundred functions. These functions control
your graphics device to draw triangles, points, lines, and other complex data in three
dimensions. OpenGL also has the capability to add lighting to your scene; use textures
for adding more realism; and use blending, shading, animation, and a host of other
effects.

OpenGL does not provide any functions for window management on yourplatform of choice. It also does not provide any custom method for manipulating
input or audio devices. It focuses solely on providing a strong graphics architecture.
The strength ofthis approach is thatit gives you the freedom to use nearly any pro-
gramming language or favorite library to manipulate how OpenGL functions with
your existing projects.

OPENGL AND INSTALLABLE CLIENT DRIVERS (ICDS)

Starting with the release of Windows 95 SR2, the only implementation of OpenGL
provided by Microsoft to Windows developers was through a software-only module
using the OpenGL 1.1 specification, which is contained in the openg132.d11 located
in your system directory. Because Microsoft began to focus their 3D efforts on the
production and promotion of Direct3D, the OpenGL ARB was forced to decide
how to enable future OpenGL support on the Windows platform. Withalittle helpfrom Microsoft, the ARB designed an architecture known as the Installable Client
Driver (ICD). The ICD would be provided by the video hardware vendors and acted
as a proxy between the OpenGL commandsin your program and the OpenGL run-time provided by Microsoft. Figure 6.1 provides an overview of this architecture.

Creating an OpenGL Renderer

~~
113

Application

y Y

OpenGL32.dll GDI32.dll
Y

OpenGL ICD
Y Y Y

Video Display Driver Interface

FIGURE 6.1 OpenGL ICD architecture.

UNDERSTANDING THE OPENGL ARCHITECTURE

Since you learned about the Fixed Function Pipeline in Chapter 5, “Graphics Pro-

gramming Mathematics,” you should not have too much trouble understanding
the basic OpenGL rendering pipeline shown in Figure 6.2 as a higher level overview.

There are two paths through the pipeline depending on whether the input is an
image (thatis, pixel data) or vertices representing your game world meshes or ob-

jects. The data passes through the pipeline, and the final productis rendered (ras-

terized) onto the video hardware. Although you cannot modify the final surface

that is displayed on the video hardware, also known as the frame buffer, you do have

the ability to manipulate several other buffers, which are combined to compose the

final output.

114 Game Programming in C++: Start to Finish

Vertex
Per-vertexdata operations

,.| Evaluators and primitive

Ir assembly J
—| Display

Rasterization Per-fragmentlist | operations

Pixel : Texture Framebuffer| operations f<--- assemblyPixel : BoE E ETasby=data = TTTTTTTTTTTmmeeeeeeesees

FIGURE 6.2 OpenGL rendering pipeline.

DEFINING THE SCENERENDERER

As you learned in Chapter 4, “Introduction to the Peon Engine,” the Peon en-
gine works by providing a SceneRenderer interface that you will use to setup the
necessary OpenGL architecture to render your scene data.Pr Listing 6.1 provides a shortened outline ofthe class found in the /Peon/Peon-

ome Main/include folder on the CD-ROM.

LISTING 6.1 SceneRenderer Interface

namespace peon
{

/** This object is used to process our rendering commands by acting* as a layer or interface above the underlying OpenGL architecture
®)

class SceneRenderer : public IUnknown
{

protected:

/** width of the context */
int m_iDeviceWidth;

/** height of the context */
int m_iDeviceHeight;

pu

bs

Creating an OpenGL Renderer 115

/** depth of the context. Usually either 16 or 32 */

int m_iBitsPerPixel;

/** are we windowed or fullscreen? */
bool m_bWindowed;
/** SDL_Surface to contain the OpenGL commands */
SDL_Surface* m_pOGLSurface;

//snip

blic:

/** Constructor */
SceneRenderer();

/** Destructor */
~SceneRenderer();

11}

/** This method is used to load our OpenGL context using params
* from the INI file. */
bool loadDevice(IniConfigReader*);

/** This methed is used to unload and destroy our OpenGL

* context */
void unloadDevice();

/** This method is used to clear our back surface in
* preparation of our next frame of rendering commands */
bool clearDevice(); :

/** This method is used to flip our surface chain. The back
* surface becomes the front, and the front becomes the back */
void flipDevice();
//snip

116 Game Programming in C++: Start to Finish

LOADING THE OPENGL DEVICE USING SDL

It is within the sceneRenderer: +loadDevice method where you get to the nuts andbolts of creating a new SDL_Surface object with OpenGL capabilities. Listing 6.2 de-tails how thisis accomplished. :

LISTING 6.2 Creating an OpenGL Surface

bool SceneRenderer: : 1oadDevice (IniConfigReader+ pConfig){

Uint32 iFlags;
iFlags = SDL_OPENGL ; /1 we want an openGL windowiFlags |= SDL_HWPALETTE;// access the hardware colour paletteiFlags |= SDL_RESIZABLE;// the window should be resizeable

//use the IniConfigReader object to snag the desired width//of the context
m_iDeviceWidth = (int)pConfig->getInt ("Application"WindowWidth", 640);

//grab the height
m_iDeviceHeight = (int)pConfig->getInt ("Application"WindowHeight", 480) ;

//grab the bit depth 16 or 32
m_iBitsPerPixel = (int)pConfig->getInt ("Application","WindowDepth", 16);

//do we want a windowed or fullscreen applicationm_bWindowed = PConfig->getBool ("Application”, "Windowed","TRUE");

//to play nice, you should query SDL for video hardware infoconst SDL_VideoInfo * pVideoInfo = SDL_GetVideoInfo();if(NULL == pVideoInfo)
{

//failed to grab information
return false;

}

Creating an OpenGL Renderer

~~
117

//test if a hardware surface is available
if (pvideoInfo->hw_available)

iFlags |= SDL_HWSURFACE;

else
iFlags |= SDL_SWSURFACE;

//test if hardware blitting is available
if (pvideoInfo->blit_hw)

iFlags |= SDL_HWACCEL;

//to create a fullscreen application, you just need to append

//the proper SDL flag to our list of properties you specify
//when creating the surface.
11

//For debugging, you typically leave it a windowed app in

//order to read any output or trace through the execution
//stack in your debugger. Fullscreen mode is usually reserved

//for the final release of your game.

if (!m_bWindowed)
{

iFlags |= SDL_FULLSCREEN;

}

// enable double buffering
SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);

// set the precision of the depth buffer — usually 16 or 32 bits
SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, m_iBitsPerPixel);

// disable the stencil buffer
SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 0);

//no accumulation buffer, so disable the accumulation bits
SDL_GL_SetAttribute(SDL_GL_ACCUM_RED_SIZE, 0);
SDL_GL_SetAttribute(SDL_GL_ACCUM_GREEN_SIZE, 0);
SDL_GL_SetAttribute(SDL_GL_ACCUM_BLUE_SIZE, 0);
SDL_GL_SetAttribute(SDL_GL_ACCUM_ALPHA_SIZE, 0);

//we have finished with our parameters: CREATE THE DEVICE!

//m_pOGLSurface is an SDL_Surface which acts as a container
//of sorts for the surface area/buffer that's displayed
//to the main video display. (Because we're using a cross-platform

118 Game Programming in C++: Start to Finish

//1library, the SDL_Surface is a very generic data structure).m_pOGLSurface = SDL_SetVideoMode (m_iDeviceWidth,
m_iDeviceHeight, m_iBitsPerPixel, iFlags);

//if our surface is null ‘then we've got a problem.
//quit now

if(NULL == m_pOGLDevice) return false;
return true;

}

The code shownin Listing 6.1 is responsible for initializing and configuring the
OpenGL context with the help of the SDL toolkit. You first begin by specifying what
type of pixelformat you want the OpenGL rendering context to have. A pixelformatis a way to contain and define the properties of the desired OpenGL context. In
Listing 6.2, for example, you are defining a pixelformatto be an OpenGL contextcreated in the video hardware, double-buffered with a depth buffer precision of 16bits. The finalcall to SpL_setvideoMode then attempts to create the OpenGL contextgiven these desired window and pixelformat parameters.

As outlined in the comments of Listing 6.2, you can specify whether or not youwant your game running in windowed or full-screen mode. When you are work-
ing with an alpha or beta version ofyour game,it is usually betterto keep your ap-plication in windowed mode. Depending upon the type ofgame, you would then
specify a full-screen mode when releasing the game to the public. On some of theolder video hardware, you also might notice an increase in performance when
putting your application in full-screen mode.

WORKING WITH OPENGL SURFACES

After the OpenGL context is created with double buffering enabled, you have twoavailable surfaces of video memory within the graphics hardware with which towork. These two surfaces are known as the front buffer (or primary surface) and back
buffer (or secondary surface). Managing these two buffers effectively is what createsthe illusion of animation and high-speed polygons within your game,Each surface can be thought of as an array containing color pixels that you dis-
play on the monitor. The resolution of the surface defines the precision of thesecolor pixels, so the lower the resolution, the less memory the surface will requirewithin the video hardware.

Creating an OpenGL Renderer

~~
119

For example, a common resolution is 800 x 600 x 32, meaning that the surface

is 800 pixels wide, 600 pixels high, and using 32-bit color. With 32-bit color, you
need 4 bytes per pixel (1 each for red, blue, and green and 1 for the alpha channel).

By doing some simple math, you get 800 xX 600 X 4 bytes or 1,920,000 bytes (roughly

1.9 MB) of memory allocated for this surface, which is then doubled since you are

working with two of them.

CATHODE RAY TUBE MONITORS AND PHOSPHORS

The display surface of a regular CRT monitoris covered by three kinds of phos-

phors that display a different color, depending upon the monitor’s electron gun. A

red phosphor emits red light, a green phosphor emits green light, and a blue phos-

phor emits blue light. Thisis depicted in Figure 6.3.

Electron
Guns

Magnified
Phosphor-Dot
Triangle

Screen

FIGURE 6.3 CRT phosphor depiction.

120 Game Programming in C++: Start to Finish

When the video hardware is presenting an image to the front buffer, the elec-
tron gun starts with the upper-left corner of the display. Asthe electron gun movesfrom left to right, top to bottom, the video hardware signals the gun how long to
keep it on each ofthe red, green, and blue phosphors before moving to the next
pixel. An RGB value of (0,0,0) signals the electron gun to skip over the current pixelsince we want the color black. An RGB value of (255,0,0), however, signals the
electron gun to remain on the red phosphor as long as possible, but to skip over the
green and blue phosphors.

When the electron gun finishes moving pixel by pixel through your display tothe bottom-right corner, it moves back to the upper-left corner of your display to
start the whole process over again.

This time period when the gun is moving from the bottom-right back to the upper-
left corner of the displayis known as the vertical retrace period.

The measure of how many times per second the gun is able to update the screenis knownas the refresh rate and measured in Hertz (Hz). Usually, the video hard-
ware operates within the range of 60 to 85 Hz.

Because the front buffer is the one always presented to the monitor, OpenGLwill not allow you to manipulate it directly. Otherwise, there would be an annoy-ing flickering on the monitorsince the electron gun is refreshing the current image
as it is being displayed. To overcome this flickering, you instead operate on the back
buffer surface memory. The back buffer can be thought of as the next frame ofthe
scene. When you have finished creating the scene on the back buffer, the surfaces
are then flipped so that the back buffer becomes the new frame to be drawn by the
electron gun, while the front buffer becomes the new back buffer in which you then
proceed to draw the next frame of action.

Thisis also known as double buffering and has been a common practice for smooth
graphics animation for a long time.

wOTE

Usually, the optimaltimeto flip the video surfaces is during the vertical retrace
period of the monitor; otherwise, you can get tearing, which occurs when the topportion of the display is the old front buffer, whereas the bottom portion beingdrawn is using the new video buffer.g

Clearing the Device

Since you are working with a double-buffered mechanism to generate the illusion
of smooth animation within the game world, you need to clear the back buffer sur-

Creating an OpenGL Renderer

~~
121

face to push the primitive data that composes the next frame. Listing 6.3 demon-
strates how to clear the back buffer, taken from the SceneRenderer.h header file.

LISTING 6.3 SceneRenderer::clearDevice()

bool SceneRenderer::clearDevice()
{

//clear the depth and color buffers
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
//reset the current modelview matrix to the identity matrix
glLoadIdentity();

return true;

Flipping the Device

After you finish sending your vertices to the graphics pipeline, you need to signal
the hardware to flip the context surfaces—sending the back buffer to the display,
while the front buffer becomes your new working surface. Listing 6.4 shows how

this is done in the SceneRenderer object.

LISTING 6.4 SceneRenderer::flipDevice()

void SceneRenderer::flipDevice()
{

glFlush(); //flush any commands leftover in the OpenGL pipeline
SDL_GL_SwapBuffers(); //swap our buffers

}
3

That is all thatis needed to create and use an OpenGL context for rendering

any desired vertex information.

Unloading the Device

When you are finished with your OpenGL device, you should clean up any mem-

ory that you allocated during the lifetime of the object. In the case ofthe SceneRen-

derer object, only the memory allocated by the sbL_Surface object, which

encapsulates the OpenGL context, needs to be freed. Listing 6.5 demonstrates this.

122 Game Programming in C++: Start to Finish

LISTING 6.5 SceneRenderer::unloadDevice

void SceneRenderer: :unloadDevice()
{

//SDL will free the allocated memory for us.
//Just use the method!
SDL_FreeSurface(m_pOGLSurface)ii

}

Thatis all you need to worry about. SDL will take care of the rest for you by
managing the proper destruction and cleanup ofthis surface.

THE OPENGL STATE MACHINE

OpenGL is known as an immediate mode API. This means that the current state of
the rendering flags within the OpenGL pipeline immediately affect the outcome of
your vertex datato the rasterizer. You can control and manipulate these rendering
flags (or states) to enable or disable any feature ofthe pipeline. The two main inter-
faces that OpenGL provides for state manipulation are the glEnable and glDisable
commands. They can be used in conjunction with the g11sEnabled and glIsDisabled
functions to query the current state of any rendering flag as shown in Listing 6.6.

LISTING 6.6 glEnable/glDisable

glEnable(GL_LIGHTING); //enable the lighting engine
glDisable(GL_BLEND); //disable blending

GLboolean current_state;
current_state = glIsEnabled(GL_DEPTH TEST);
//is our depth testing enabled?

Saving and Restoring State Information
You are familiar with the projection and modelview matrix stacks that OpenGL
maintains, but there also exists a state stack that is available for the current render-
ing state of the pipeline. This stack gives you precise control over what you save

Creating an OpenGL Renderer

~~
123

(that is, push) and what you restore from the stack (that is, pop). The glPushAttrib
and g1PopAttrib methods are available for this purpose of saving or restoring exact

state information such as the current color or point size, and so on. Listing 6.7

demonstrates how they can be used.

LISTING 6.7 glPushAttrib / glPopAttrib

//push our current color onto the stack — pretend it's red

glPushAttrib(GL_CURRENT_BIT);

//set our color to white
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);

//render some primitives
render_primitives();

//restore the saved color state which restores the red color
glPopAttrib();

RENDERING PRIMITIVES

The SceneRenderer implementation has been created and is now ready to use. In

order to make any object in your game world render to the OpenGL context, you
must describe their appearance with the help of primitives. These primitives are like

the building blocks of the objects in your game world, not unlike forming a DNA

sequenceto create or clone genetic material. OpenGL allows you to use several dif-

ferent kinds of primitives, which are shown in Table 6.1.

TABLE 6.1 Common OpenGL Primitive Types

Primitive Type Description

GL_POINTS Single vertices.

GL_LINES Vertices are grouped into pairs to render unconnected
lines.

GL_TRIANGLES Vertices are grouped into threes to form unconnected
triangles.

GL_TRIANGLE_STRIP Similar to GL_TRIANGLES, only they are connected.

GL_QUADS Vertices are grouped into fours to form unconnected
quadrilaterals.

124

For an overview on how these primitives are grouped together,
Figure 6.4.

ov4
V0 @ ® v3

vie @,2
GL_POINTS

\2l

SHadioS vov6
v6

GL_LINES

GL_POLYGON

vi

v0 v2
GL_TRIANGES

Game Programming in C++: Start to Finish

vO

v3

v4 vi
GL_LINES_STRIP

v2

v4 v7

GL_QUADS

v3
v5

GL_TRIANGE_STRIP

FIGURE 6.4 OpenGL primitives.

To signal OpenGLthat you are sending vertices into the graphics pipeline for
processing, you must surround any group of vertex definitions with a pair of g1Be-
gin and g1End commands. This prepares the hardware to accept vertex data into the
graphics pipeline. Listing 6.8 contains a sni
how to render a basic square.

v5

vO
v4

vi v2

GL_LINES_LOOP

va’
Vig

vo Do
v4

GL_QUAD_STRIP

vi
v2

v3
vO

v4

GL_TRIANGE_FAN

ppet of OpenGL code demonstrating

please refer to

Creating an OpenGL Renderer

~~
125

LISTING 6.8 Basic Square

//snip
glClear(GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT);
glLoadIdentity();

//signal to the OpenGL pipeline that you want to start
//rendering individual triangles. Each three vertex
//definitions are grouped into a single triangle,
//therefore you need to specify 6 vertices for one square
glBegin(GL_TRIANGLES);

glvertex3f(-1.0f, -1.0f, -10.0f); //bottom-left vertex
glvertex3f(-1.0f, 1.0f, -10.0f); //top-left vertex
glvertex3f(1.0f, -1.0f, -10.0f); / /bottom-right vertex

glvertex3f(1.0f, -1.0f, -10.0f); //bottom-right vertex
glvertex3f(-1.0f, 1.0f, -10.0f); //top-left vertex
glvertex3f(1.0f, 1.0f, -10.0f); //top-right vertex

glEnd();

//finished passing all primitive data to the pipeline
//signal opengl/SDL to flip the buffers for us.
glFlush();
SDL_GL_SwapBuffers();

Rendering Vertices with the SceneRenderer
Now that you can render a basic triangle or two with OpenGL, some more func-

tionality needs to be added to the SceneRenderer interface in orderto do this within

the Peon game engine.
No matter which API you will use to render your primitives, you will still need

to define how a primitive is composed and what type ofvertex information you
want to feed your pipeline. For the triangle data with which you will be working,

you only need to create one vertex type (for now): the DiffusePrim. This will sim-

ply encapsulate the vertex information that every object using the Peon library
needs. Listing 6.9 gives a better picture of the piffusePrim definition.

126 Game Programming in C++: Start to Finish

LISTING 6.9 DiffusePrim

namespace peon
{

struct PEONMAIN_ API DiffusePrim
{

float x, y, z; //x,y,z position of the vector
float r, g, b, a; //diffuse color components (to be discussed)

bs

At the moment, the only attribute that looks recognizable right now is the x,y,zposition of your vertex. The rest will become clearer throughout the rest of this
chapter. Listing 6.10 details the new method addition to the SceneRenderer object.

LISTING 6.10 Addition to SceneRenderer.h

//snip
//this method is used to pass a group of DiffusePrim
//triangles to the pipeline
void drawPrim(DiffusePrim* pVertices, int count);

The final step in implementing this function is to implement the method in the
SceneRenderer. cpp file. Listing 6.11 details how this method operates.

LISTING 6.11 drawPrim Implementation

void SceneRenderer::drawPrim(DiffusePrim* pvertices, int count)
{

//push the current modelview matrix onto the matrix stack
glPushMatrix();

/Ipush the current color information onto the attribute stack
glPushAttrib(GL_CURRENT BIT 15s

glLoadIdentity();

//start pushing triangles through the pipeline
glBegin(GL_TRIANGLES);

Creating an OpenGL Renderer

~~
127

for(int i = 0; i < count; i++)
{

//specify the diffuse color component of the vertex
glColor4f(pVertices[i].r, pVertices[i].g,

pVertices[i].b, pVertices[i].a);

/ specify the position component of the vertex
glvertex3f(pVertices[i].X, pvertices[i].y, pVertices[i].z);

//finished
glEnd();

//restore the color attribute and the original modelview matrix
glPopAttrib();
glPopMatrix();

}

In the /chapter_06/BasicPrims project, there is a method of demonstrating how

to pass an array of DiffusePrim objects to the SceneRenderer. Listing 6.12 details

how this is done.

LISTING 6.12 MainState.cpp

//define a simple square here using the peon::DiffusePrim type
DiffusePrim m_oTriPrims[6];

//snip
//Put this vertex left 1 unit and down the y-axis 1 unit then move

//into the screen by 10 units
m_oTriPrims[0].x = -1.0f;
m_oTriPrims[0].y = -1.0f;
m_oTriPrims[0].z = -10.0f;

//move this vertex up the y-axis by 1 unit, then move into the
. screen

//by 10 units :

-1.0f;m_oTriPrims[1].x =

m_oTriPrims[1].y = 1.0f;
m_oTriPrims[1].z = -10.0f;

128 Game Programming in C++: Start to Finish

//put this vertex one unit to the right, one unit down and 10 units
in

m_oTriPrims[2].x = 1.0f;
m_oTriPrims[2].y -1.0f;
m_oTriPrims[2].z -10.0f;

//snip — the other 3 vertices are defined similarly

//Grab the renderer from the EngineCore singleton and pass
//the triangle data to it
SceneRenderer* pRenderer =

EngineCore: :getSingleton().getRenderer();
pRenderer->drawPrim(m_oTriPrims, 6);

You will then see in the main window a white triangle on a blue background as
shown in Figure 6.5.

EEE TE

FIGURE 6.5 BasicPrims output.

Creating an OpenGL Renderer 129

TEXTURE MAPPING

Giving the scene a real polished look and feel comes from the use of highly detailed
textures. The process of texture mapping involves taking an image and attaching it
to a polygon or other vertices within the graphics pipeline.

This process can really elevate the quality of the objects within a scene, as well

as to help improve the ever important frame rate, since in some cases you might
have the option to replace a highly detailed 3D model with that of a texture mapped
quadrilateral.

A texture map is broken into a 2D rectangular array of cells, known as texels.

These texels can then be applied to any object within the game world, rectangular
or not.

Although you can use one- or three-dimensional textures for your mapping
process, this book focuses only on using two-dimensional textures having just a

pms width and height.

Creating an OpenGL Texture

Before you can use a texture map within the graphics pipeline, you must first
load it into OpenGL. OpenGL does have a small image loading library available
called glaux, but you can take advantage of a helpful SDL library, sbL_Image. It sup-
ports a wider variety of image formats than the glaux and minimizes most of your
image manipulation needs.

Thefirst step in the process of creating an OpenGL textureis to first load the
texture data from the image file. Within the Peon project,this is accomplished by
using your SceneRenderer object to load and instantiate the SceneTexture object,
which is a handle to the texture information. You can see how this is done in List-
ing 6.13, which is taken from the sceneTexture object in the Peon engine.

LISTING 6.13 SceneTexture::loadImage()

bool SceneTexture::loadImage(const String& strFilename, bool
bAlpha,

bool bMipMaps, bool bRepeat)

{

//load the image data to an SDL_Surface structure
SDL_Surface* pTexSurface = IMG_Load(strFilename.c_str());
if(NULL == pTexSurface)

130 Game Programming in C++: Start to Finish

//error
return false;

After this is done, you need to allocate and create an array large enough to hold
the texture data. You then will loop through the loaded texture information and
copy it overto the new array, as shown in Listing 6.14.

LISTING 6.14 Creating the Image Data Array

//calculate the total size of the image data. If you are needing
//the alpha channel then account for that
int dim = pTexSurface->w * pTexSurface->h * ((bAlpha) ? 4: 3);
GLubyte *pData = new GLubyte[dim];

//1loop through our SDL_Surface and copy it into the array
//if the image has an extra alpha channel of information then
//be sure to append that
int pos = 0;
for(int y = (pTexSurface->h — 1); y > -1; y-)
{

for(int x = 0; x < pTexSurface->w; x++)
{

Uinta r, g, b, a;

//getPixel is defined in the SDL documentation. It just
//grabs the pixel data from a given SDL_Surface at
//coordinates x,y

Uint32 color = getPixel(pTexSurface, x, vy);

//Next, just pull the r,g,b diffuse color component
//values from the pixel we just pulled from the SDL_Surface
if (!bAlpha)

SDL_GetRGB(color, pTexSurface->format, &r, &g, &b);
else

SDL_GetRGBA(color, pTexSurface->format, &r, &g, &b, &a);

pData[pos] = r; pos++;
pData[pos] = g; pos+t;
pData[pos] = b; pos++;
if (bAlpha)

{

Creating an OpenGL Renderer

~~
131

//if we need the alpha channel information then copy it over
pData[pos] = a; pos++;

}

}

}

}

After you have finished this step, you now have the image data copied into the
allocated array in memory. Also take note that you will need to allocate extra bytes
should the image contain an alpha channel. The alpha channel stores extra informa-
tion for the texture, which is most commonly used to calculate transparency or
blending effects. More use ofthe alpha channel is described later in this chapter.

Now it is time to create a texture handle within OpenGL. This is necessary, as
OpenGL will then be able to optimize where this texture data will reside in mem-
ory. The glGenTextures function is used to create a new texture handle. You are
then going to be working with this texture handle within the OpenGL pipeline, so

you must use the g1BindTexture to bind (or glue) the desired texture handle to the
current working texture stack within OpenGL as shown in Listing 6.15.

LISTING 6.15 Generating and Loading an OpenGL Texture Handle with glTexImage2D

//m_tex is a GLuint value which acts as a handle and contains an

//automatically generated value from OpenGL

//if the alpha channel information is needed, set as GL_RGBA,

otherwise
//use GL_RGB

int type = (bAlpha) ? GL_RGBA : GL_RGB;

glGenTextures(1, &m_tex); // Generate texture ID

glBindTexture(GL_TEXTURE_2D, m_tex);

Now that the texture handle has been created within OpenGL memory, you
can decide whether you want to have OpenGL automatically generate mipmapped
textures for you ofthe same image. Mipmapping is a process by which textures are
generated based upon the distance of the viewer to the texture. Having mipmapped
textures can increase the visual effect of a texture, which is meant to preserve the
resolution of the image no matter how far or close the camera is to the textured ob-
ject. For example, in any virtual world or FPS, the player tends to move through
levels and will hide behind objectsif they are being attacked. Without mipmapping,
a simple wall texture that appears as some regular bricks will appear normal from
a distance. As the player moves closer, however, the brick texture will appear dis-
torted and pixilated. Mipmapping preserves the original texture image by making

132 Game Programming in C++: Start to Finish

the brick appear the same no matter how close or far away the camera is. Listing
6.16 proceeds to generate mipmaps of the textureif you so desire.

LISTING 6.16 Enabling Mipmapping

int filter_min, filter_mag;

filter_min = (bMipMaps) ? GL_NEAREST_MIPMAP_NEAREST : GL_NEAREST;

filter_mag=GL_NEAREST;

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
filter_min);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

filter_mag);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,

(bRepeat) ? GL_REPEAT : GL_CLAMP);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,

(bRepeat) ? GL_REPEAT : GL_CLAMP);

if (bMipMaps)
{

gluBuild2DMipmaps (GL_TEXTURE_2D, type, pTexSurface->w,
pTexSurface->h, type, GL_UNSIGNED BYTE, pData);

}else
{

glTexImage2D(GL_TEXTURE_2D, 0, type, pTexSurface->w,
pTexSurface->h, 0, type, GL_UNSIGNED_BYTE, pData);

}

//now that we are finished, do some garbage collection
//clean up our array and destroy the surface you loaded
delete [] pData;
SDL_FreeSurface(pTexSurface);

//return the texture handle
return true;

Creating an OpenGL Renderer 133

Using the Texture Map

Now that your texture information is loaded into the OpenGL context, you can
then apply it to any primitive data you wantto pass through the pipeline. To let the
pipeline know which texel to apply to which primitive, you need to understand
basic texture coordinates.

2D texture coordinates are usually defined as (s,t) or (u,v) pairs, and range
from 0.0f to 1.0f inclusive. The upper-left corner of the texture map is referenced
as (0.0f, 1.0), and the lower-right corneris referenced as (1.0f, 0.0f).

Before OpenGL can apply the texture data to any vertices, the individual tex-
ture coordinates must be defined using the g1TexCoord2f function within the g1Be-

gin/glEnd block. Listing 6.17 takes the simple square you created earlier and applies
the necessary texture map information.

LISTING 6.17 A Simple Textured Square

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();

//signal to the hardware you want to start rendering
//triangles
//The texture data has been loaded into the triangle_texture variable
glBindTexture (GL_TEXTURE_2D, triangle_texture);
glBegin(GL_TRIANGLES);

//first triangle vertices
glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -10.0f);
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -10.0f);
glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, -10.0f);

//second triangle vertices
glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, -10.0f);
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -10.0f);
glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -10.0f);

glEnd();

glFlush();
SDL_GL_SwapBuffers();

Using the SceneTexture

When everything is compiled within the project, a demonstration of how to use the

~~, SceneTexture interface can help you understand how everything will fit together. In
owmeco the /chapter_source/chapter_06/BasicTexture project on the CD-ROM, you can

134 Game Programming in C++: Start to Finish

see how the texture data is loaded and displayed onto the square you created in the
BasicPrims project. Listing 6.18 details the pertinent function methods for texture
manipulation.

LISTING 6.18 BasicTexture

SceneTexture* pTex = NULL;

//load our texture accepting our default texture parameters
pTex = pRenderer->loadImage("data\\textures\\sdl logo.bmp");

//now set it before rendering the square.
glBindTexture(GL_TEXTURE_2D, pTex->getTex());
pRenderer->drawPrim(m_oVerts, 6);

When the project is compiled and run, you should see a window come up with
the SDL logo being displayed on the square as shown in Figure 6.6.

FIGURE 6.6 BasicTexture output.

Creating an OpenGL Renderer 135

With the power of encapsulation, you have now made working with texture
data a simple task for your project. Well done!

RENDERING TEXT

A critical component of any game is to provide effective feedback to the player for
him to understand whatis expected during the game—not to mention the player’s
general progress orstatus. From displaying the player’s current score, to providing
instructions to the player on what he must do next, rendering text is a critical com-
ponent of games. For handling text on your OpenGL context, you have two real op-
tions: system fonts or texture bitmapped fonts.

Although SDL has some external libraries to help with creating True Type font
strings, most game programmers use texture bitmapped fonts to render their text
to the player. It can give the game a more professional feel, and thereis no reliance
on any specific underlying system fonts on the machine. The only magic behind
using texture mapped fonts is that the font texture must contain the alphabet in
ASCII order, which is then cached into a display list.

OPENGL DISPLAY LISTS

OpenGL can use several methods and algorithms to cache rendering instructions in
order to improve the performance of the data in your scene. Using display lists al-
lows the OpenGL context to store commands in an optimal memory location most
often directly within the video memory itself. When you signal the context to
process the display list, OpenGL will then execute the entries in the same order they
were stored. :

The general procedure for using display lists is to first have OpenGL generate a
display list handle using glGenLists(). You then will compile a new list of com-
mands that you want to have cached within the display list using giNewList(). To
signal the context that you want to use the display list, you will need to work with
the glcallList() function. Finally, the glbeleteLists() function is used to free this

— stored memory. Listing 6.19 outlines a small sample of using display lists, which is

taken from the /chapter_06/BasicDisplayList sample on the CD-ROM.

LISTING 6.19 Small Display List Sample

//similar to texture handle creation, create a display list handle
GLuint tri_display_list = glGenLists(1);

136 Game Programming in C++: Start to Finish

//compile a basic triangle within this new list
glNewList(tri_display_list, GL_COMPILE);

glBegin(GL_TRIANGLES);
glvertex3f(-1.0f, 0.0f, -10.0f);
glvertex3f(0.0f, 1.0f, -10.0f);
glVertex3f(1.0f, 0.0f, -10.0);

glEnd();

//you are finished with the display list. Close it off
glEndList();

//snip
//now let's render it.
glClear(GL_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);
glLoadIdentity();

glCallList(tri_display_ list);

glFlush();
SDL_GL_SwapBuffers();

//snip
//now let's free the memory allocated to the display list
glDeletelLists(tri_display_list, 1);

Storing the Font Characters

The first step in rendering some bitmapped font textis to first create and load a dis-
play list that contains the texture coordinates of each character ofthe font. Listing
6.20 documents a wayto take the number of rows and columns of your font texture
and loop through each character storing the texture coordinates to use later. This

~~. is taken from the SceneFont object in the /Peon/PeonMain/include folder on the
owmeco CD-ROM

LISTING 6.20 Storing Texture Coordinates of Each Character

bool SceneFont::loadFont(int char_width, int char_height,
int char_spacing)

int loop;

Creating an OpenGL Renderer

~~
137

float cx;
// Holds Our X Character Coord

floatcy;
// Holds Our Y Character Coord

float CWX ;

// CharWidth in texture units
float cwy;

m_char_width = char_width;
m_char_height = char_height;
m_char_spacing = char_spacing;

cWX

cwy

(1.0f / 256.0f) * m_char_width;
(1.0f / 256.0f) * m_char_height;n

//Calculate the number of display lists we need

//by taking the product of the rows and columns
m_displaylist = glGenLists(m_fxCount * m_fyCount);

for (loop=0; loop<(m_fxCount * m_fyCount); loop++)
{

// X position of current character
cx float (loop%sm_fxCount) * cwx;

// Y position of current character
cy float (loop/m_fyCount) * cwy;

// Signal a new list
glNewList(m_display_list + loop,GL_COMPILE);

// Use A Quad For Each character in the ASCII table
glBegin(GL_QUADS) ;

glTexCoord2f(cx,1-cy-cwy); glvertex2i(0,m_char_height);
glTexCoord2f (cx+cwx,1-cy-cwy);

glVertex2i(m_char_width, m_char_height);

glTexCoord2f (cx+cwx,1-cy); glVertex2i(m_char_width, 0);

glTexCoord2f(cx,1-cy); glvertex2i(0, Q).;

glEnd();

138 Game Programming in C++: Start to Finish

}

//move to the right to work with the next character
glTranslated(m_char_spacing,0,0);
//the list is finished. Close it off
glEndList();

}

//finished. Return no problems.
return true;

When thatis finished, this font display list is then used whenever you want to
render any text. An example of using the SceneFont object to render some textis de-
tailed in Listing 6.21.

LISTING 6.21 SceneFont::drawText()

void SceneFont::drawText (float xpos, float ypos, const String&
strText)

{

//snip!
//put the matrix mode to the modelview
glMatrixMode (GL_MODELVIEW);

glPushMatrix();
glLoadIdentity();
//translate to the coordinates passed into this function
glTranslatef (xpos,ypos,0.0f);
glColor4f(1.0f, 1.0f, 1.0f,1.0f);

//set the list base to the beginning of our ASCII alphabet
glListBase(m_displaylist - 32);
//call each display list associated with the appropriate
//letter in the ASCII table
glCallLists((int)strText.length(), GL_BYTE, strText.c_str());

//snip!

The SceneFont in Action

Now that you have created and implemented a way to present text data to the
OpenGL context, you can run through a sample demonstrating how to use it. The
BasicFont project demonstrates one way of using the SceneFont object. In the

Creating an OpenGL Renderer

~~
139

a) /chapter_06/BasicFont/Main.cpp implementation file on the CD-ROM, Listing
ome 6.22 demonstrates how to load a new SceneFont.

LISTING 6.22 Loading a New SceneFont

//m_pFontTexture is defined as a SceneTexture object
m_pFontTexture = EngineCore::getSingleton().getRenderer()

->loadTexture("data\\textures\\font.png");

//the characters in the font texture are 16 pixels wide,
//16 pixels high and 14 pixels apart from each other
m_pFont = EngineCore::getSingleton().getRenderer()

->loadFont (16, 16, 14);

Printing Text

Now that the sceneFont is loaded into the program, you can use it to display any
text you want. For this sample, you are simply displaying the words “Hello World”

in the upper-left corner of the context, which is detailed in Listing 6.23.

Within the SceneFont object you are switching into an orthographic projection to

position and render your text without any appearance ofdepth. As such, the coor-

pe dinates 0,0 represent the top left corner ofyour context.

LISTING 6.23 Printing Text

//snip
//grab a handle to the current SceneRenderer
SceneRenderer* pRenderer =

EngineCore::getSingleton().getRenderer();

//set the texture for the font image
pRenderer->setTexture(m_pFontTexture);

//print "Hello World" to coordinates 10,10 from the upper-left corner
m_pFont->drawText(10, 10, "Hello World");

Cleaning Up

There is not much more involved in displaying characters from a given font
bitmap. Now you need to properly clean up the allocated memory used during your
sample; Listing 6.24 details how to dispose of the used resources.

140 Game Programming in C++: Start to Finish

LISTING 6.24 Garbage Disposal

//unload the font object in memory
EngineCore::getSingleton().getRenderer()->

unloadFont(m_pFont);

//unload the font texture data in memory
EngineCore::getSingleton().getRenderer()->

unloadTexture(m_pFontTexture);

After you launch the /chapter_source/bin/BasicFont.exe binary, you will see a
window displayed with your text as shown in Figure 6.7.

aE

FIGURE 6.7 BasicFont output.

Although displaying information to the player is of a critical importance, you
can see how easyit is to make this happen with OpenGL. Feelfree to experiment
with different font bitmaps of different sizes to get used to using the SceneFont
object.

RENDERING A SIMPLE CUBE

You have learned enough information on rendering OpenGL primitives to tackle
something more interesting than a square or rectangle. A basic geometric object

Creating an OpenGL Renderer

~~
141

that beginner graphics programmers often render is a cube. Cubes are an excellent

way to learn how vertices interact with each other, along with learning how to
properly position the object and apply texture coordinate information. Working
from the /chapter_06/BasicCube project, you can create a display list to store your
geometric vertices. Listing 6.25 demonstrates how this is done.

LISTING 6.25 Creating a Display List for the Cube

//m_uTriDisplayList is defined as a GLuint variable type
//Generate a display list handle with OpenGL

m_uTriDisplaylList = glGenLists(1);
//open the new list for vertex compilation

glNewList(m_uTriDisplaylList, GL_COMPILE);
//Until now you've been working with the GL_TRIANGLES primitive
//which is more than capable of handling a cube. For brevity
//purposes in this listing, using the GL_QUAD type is an option
glBegin(GL_QUADS) ;

//the front
glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, 50%; 1.01);
glTexCoord2f(1.0f, 0.0f); glvertex3f(1.0F,"-1.0F, 1.0f);
glTexCoord2f(1.0f, 1.0f); glvertex3f(1.0f, 1.0f, 1.0f);
glTexCoord2f(0.0f, 1.0f); glvertex3f(-1.0f, 1.0f, 1.0f);

/ /the back
glTexCoord2f(1.0f, 0.0f); glvertex3f(-1.0f, -1.0f, -1.0f);
glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f; =1.0F);
glTexCoord2f(0.0f, 1.0f); glvertex3f(1.0f, 1.0f, -1.0f);
glTexCoord2f(0.0f, 0.0f); glvertex3f(1.0f, -1.0f, -1.0f);
//the top
glTexCoord2f(0.0f, 1.0f); glvertex3f(-1.0f, 1.0%, 1.07);
glTexCoord2f(0.0f, 0.0f); glvertex3f(-1.0f, 1.0f, 1. 0F) §

glTexCoord2f(1.0f, 0.0f); glvertex3f(1.0f, 1.0f, 1.0f);
glTexCoord2f(1.0f, 1.0f); glvertex3f(1.0f, 1.0f, -1.0f);
//the bottom
glTexCoord2f(1.0f,
glTexCoord2f (0.0f,
glTexCoord2f (0.0f,
glTexCoord2f(1.0f,
//the right
glTexCoord2f(1.0f,
glTexCoord2f (1.0f,
glTexCoord2f(0.0f,
glTexCoord2f (0.0f,
//the left

.0f); glvertex3f(-1.0f, -1.0f, -1.0f);

.0f); glvertex3f(1.0f, -1.0f, -1.0f);

.0f); glvertex3f(1.0f, -1.0f, 1.0f);

.0f); glvertex3f(-1.0f, -1.0f, 1.0f);
OO

=

=

.0f); glvertex3f(1.0f, -1.0f, -1.0f);

.0f); glvertex3f(1.0f, 1.0f, -1.0f);

.0f); glvertex3f(1.0f, 1.0f, 1.0f);

.0f); glvertex3f(1.0f, -1.0f, 1.0f);oOo

=

=

O

142 Game Programming in C++: Start to Finish

glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f);
glTexCoord2f(1.0f, 0.0f); glvertex3f(-1.0f, -1.0f, 1.0%);
glTexCoord2f(1.0f, 1.0f); glvertex3f(-1.0f, 1.0f, 1.0f);
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);
//Finished sending primitives

glEnd();
//you are finished with the display list. Close it off
glEndList();

Moving the Cube

Although you learned about object translation, rotation, and scaling in Chapter 5,
“Graphics Programming Mathematics,” you can now directly manipulate your new
cube objectto experiment with the effects ofthese graphics transformations.

Rendering the Cube

The cube has been positioned within the game world and is awaiting presentation
to the screen. You have already learned how to render an object using a display list,
so the following code snippet of Listing 6.26 should not come as a surprise.

LISTING 6.26 Render the Cube

//store the current matrix onto the stack, giving you a new one
glPushMatrix();
//reset the matrix to the identity
glLoadIdentity();
//apply a transformation to orient the object 5 units into the scene
glTranslatef(0.0f, 0.0f, -5.0f);
//rotate the object on the y-axis by m_fYRotation degrees
glRotatef(m_fYRotation, 0.0f, 1.0f, 0.0f);
//rotate the object on the z-axis by m_fZRotation degrees
glRotatef(m_fZRotation, 0.0f, 040f5 1.01);
//call and execute the cube's display list
glCalllList(m_uTriDisplaylList);
//restore our matrix
glPopMatrix();

Creating an OpenGL Renderer

~~
143

WORKING WITH FOG

ON THE CD

In most early 3D games, you might have remembered the heavy use of fog effects

to hide any limitations of the hardware back at that time. Games such as Turok: The

Dinosaur Hunter from Acclaim used this effect extensively through each level and

seamlessly incorporated fog into the scene. The final effect was two-fold: not only
did the fog add a mysterious element to the whole Turok jungle environment expe-
rience, but it enabled the game to obscure objects that were farther away, thus im-

proving scene performance. Within OpenGL, fog calculations are a simple matter
for the state machine, and everything is done in hardware for you.

OpenGL fog is calculated by blending the color ofthe fog with each pixel in the
affected area. The blending calculation uses a factor that is dependent upon the dis-

tance of the viewer from the fog, how dense the fog is supposed to be, and which fog

mode is enabled.
To enable the fog calculations in OpenGL, you only need to enable its state,

after which you specify any additional parameters.
/chapter_06/BasicFog is a small demo project that demonstrates how fog is

used. Listing 6.27 details the pertinent sections of code performed during the setup
of the scene.

LISTING 6.27 A Sample of Fog

GLuint fog_modes = GL_EXP;

GLfloat fog_color[4] = {0.5f, 0.5f, 0.5f, 1.0f}; //use a basic grey
glFogi(GL_FOG_MODE, fog_mode); //set the mode to GL_EXP

glFogfv(GL_FOG_COLOR, fog_color); //apply the grey fog color
glFogf(GL_FOG DENSITY, 0.35f); //set the density of the fog
glHint (GL_FOG_HINT, GL_NICEST); //apply fog calculations per pixel
glFogf(GL_FOG_START, 5.0f); //set the front fog "plane"
glFogf(GL_FOG_END, 15.0f); //set the rear fog "plane"
glEnable(GL_FOG); //enable the fog calculations

There are three basic fog modes that you can use in OpenGL: exp, exp2, and
linear.

GL_EXP: A basic fog effect that pretty much applies the fog color to the entire

scene. The final fog effect of this type is not very realistic and meant for much
older hardware.

144 Game Programming in C++: Start to Finish

GL_ExP2: This is the successor to the GL_ExP fog type. It will apply the fog
color to the entire scene, but will also apply some depth information to each
fogged pixel.
GL_LINEAR: This is the overall best fog rendering mode available. You can
specify a fog band, and OpenGL will properly calculate how much of the fog
colorto applyto pixels moving in and out of this band area.

BasicFog Demo

After you launch the BasicFog compiled binary, you will be able to see how fog cal-
culations are performed by OpenGL. Figure 6.8 shows a sample output.

FIGURE 6.8 BasicFog output.

CHAPTER EXERCISES

1. Taking the SceneFont object that you used to render text with, find a way to
further optimize the class. Hint: The less state changes the OpenGL context
needs to make, the faster the scene.

Creating an OpenGL Renderer

~~
145

2. Open the BasicFog project and experiment with different fog colors and
density levels. It is interesting to adjust the color to see the final scene pro-
duced by OpenGL.

3. Just for fun, do a small comparison of OpenGL and Direct3D. Keep a small

list handy of what you like and dislike about each API. This will help you
on any future gaming projects.

SUMMARY

Although this was a whirlwind introductory tour of OpenGL, you learned quite a

lot about creating and using an OpenGL context. The concepts behind the Fixed

Function Pipeline and the architecture of OpenGL itself should be much clearer

now as you begin to develop some experience with the APL. You learned what tex-

ture mapping is and how to do it. You also learned about using display lists to cache

certain OpenGL commandsto optimize rendering, as well as how to load and use

your own font texture, and you were given an introduction to the use of fog within

a scene. With these basics covered in OpenGL, in the next chapter you will focus

more on some of the advanced capabilities of the popular graphics APL.

More OpenGL Techniques

Chapter Goals

® Introduce and describe the OpenGL lighting system.
® Discuss blending techniques to create transparent polygons.
® Introduce and discuss the OpenGL extension mechanism.

much more to learn about how to create a proper lighting level to increase

the realism of your game, along with many other effects/tricks that can be

done. This chapter focuses both on increasing your knowledge of OpenGL as well

as adding these new techniques to the sceneRenderer interface in the Peon engine.

B: now, you have a basic footing in OpenGL programming, but you have

LIGHTING AND MATERIALS

You have learned how to create vertices and position them within your game world

using the DiffusePrim object. To add another feeling of realism, you need to learn

an important aspect of 3D programming— adding proper lighting to the scene.

147

148 Game Programming in C++: Start to Finish

To approximate the look and feel of light within the real world, OpenGL uses
several calculations (and approximations) to create the red, blue, and green com-
ponents of light as well as how these light rays interact with objects within the
scene.

One ofthe aids that OpenGL uses to compute the color components of a scene
object or mesh is through the use of a material. A material defines the basic light-
ing properties such as how an object absorbsor reflects light. The three important
characteristics of materials used in lighting calculations are ambient, diffuse, and
specular.

Ambient: Ambient light does not seem to come from any particular source
within the game world, and so surfaces containing these light properties reflect
the light in all directions.It createsa general level of light throughout the scene.
Diffuse: Unlike ambient lighting, diffuse light comes from a particular direc-
tion and usuallyis reflected evenly across your object. This kind of lighting is
what gives every object its color in your scene, from the color of your monsters
to how the player appears.. Think of it as the way light is reflected off of every-
thing you encounter in your world.
Specular: Specular lighting is another kind of directional lighting; however, it
is reflected in a particular direction and creates a bright spot on the surface of
reflection. This bright spot, also known as a specular highlight, can be used in
your scenes to create effects such as shiny objects or spotlights.

The OpenGL pipeline has been optimized for lighting calculations so all youneed to do is enable a few of the internal states. You also will need to properly se-
lect and position all of your light sources within the scene,after which you will need
to select the material you want to use for your objects in order to properly define
how they will reflect light.

LISTING 7.1 Using OpenGL Lighting

//snip
//the ambient light..it is a 4-tuple property
float ambient_light[] = { 0.5f, 0.5¢, 0.5¢F, 1.0f };

//the diffuse light..another 4-tuple property
float diffuse_light[] = { 0.25f, 0.25f, 0.25f, 1.0f };

//the position of the light — the 1.0f at the end means the first
//three values are the x,y,z position of the light in your world
float position_light[] = { 0.0f, 0.0f, 0.0f, 1.0f };

ON THE CD

More OpenGL Techniques

~~
149

//a definition of a generic ambient material
float material ambient[] = { 1.0f, 1.0f,:1.0f, 1.0%};
//provide a default diffuse material
float material diffuse[] = { 1.0f, 1.0f, 1.0f, 1..0F-};

//now you set up your FFP states
//enable the lighting state machine in OpenGL

glEnable(GL_LIGHTING);

//setup the materials for the 1°* light, refrenced as LIGHTO

glMaterialfv(GL_FRONT, GL_AMBIENT, material_ambient);
glMaterialfv(GL_FRONT, GL_DIFFUSE, material diffuse);

//setup light 0

glLightfv(GL_LIGHTO, GL_AMBIENT, ambient_light);
glLightfv(GL_LIGHTO, GL_DIFFUSE, diffuse_light);
glLightfv(GL_LIGHTO, GL_POSITION, position_light);

//finally enable the light
glEnable(GL_LIGHTO);

In OpenGL, you can use up to eight lights at a time per scene or more depending

upon the available hardware. As you might imagine, this gets incredibly computa-

tionally expensive and can really cause performance problems. Be sure to find the

optimal number oflights for your scene to achieve the desired effect but use as few

as necessary.

Defining Surface Normals

ON THE CD

Recall from Chapter 5, “Graphics Programming Mathematics,” that the normal

vectoris perpendicular to a plane or surface. Normal vectors are critical compo-
nents of the lighting pipeline as they help OpenGL calculate the orientation of the

objectto the light source.

Do not forget that taking the cross product of any two vectors on the same plane is

one method of obtaining the surface normal. Refer back to Chapter 5 on how to

calculate the cross product.

Using the glNormal family of functions, you embed the primitive’s normal di-

rection in the rendering code as you pass in the vertices for the object. Listing 7.2

should help clear this up.

150 Game Programming in C++: Start to Finish

LISTING 7.2 Rendering a Flat Square

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glLoadIdentity();

//the goal is to render a quad which is just a flat square//the vector normal to the surface of this quad is just straight//up, so you'll define it as 0.0f, 1.0f, 0.0f.
glBegin(GL_QUADS);

glNormal3f(0.0f, 1.0f, 0.0f);
glvertex3f(-1.0f, 1.0f, 1.0f);
glvertex3f(-1.0f, 1.0f, -1.0F);
glvertex3f(1.0f, 1.0f, -1.0f);
glVertex3f(1.0f, 1.0%, 1:0) ;

glEnd();

glPopMatrix();
glFlush();
SDL_GL_SwapBuffers();

Adding Light Support to the SceneRenderer
You can add this lighting capability to the Peon engine. The goalis to add somebasic but useful lighting support into the SceneRenderer interface.

You need to define a simple light object that you can create and use for ma-
“<. , nipulating the lighting levels in your scene. In the /Peon/ PeonMain/include folder,omer there is the SceneLight.h file, which is shown in Listing 7.3.

LISTING 7.3 SceneLight.h

namespace peon
{

J **
* \brief This object handles any light settings we want
x)
class PEONMAIN_API Scenelight
{

public:
//! Handles the diffuse component

Vector4 m_vecDiffuse;

More OpenGL Techniques

~~
151

//! Handles the ambient component
Vector4 m_vecAmbient;

//! Handles the position/direction of the light
Vector4 m_vecPosition;

public:

}

xe
* Constructor
*/
SceneLight(){};
| He

* Destructor
*/
virtual ~SceneLight(){};
//snip!

bs

Next, you will need a way to set a light within the SceneRenderer interface in

<<.» order to apply whatever lighting modifications you want. In the /Peon/PeonMain/

wm SceneRenderer.h file, you can add this support. Listing 7.4 details what you are

adding.

LISTING 7.4 Adding to SceneRenderer.h

class PEONMAIN_API SceneRenderer
{

bs

/ snip

//only provide support for 8 lights.
//Anything less would be uncivilized.
SceneLight m_oLights([7];
//snip

//now add a method to set a light
void setLight(int light_slot, SceneLight& oLight) = 0;

//snip

152 Game Programming in C++: Start to Finish

As you can see, the SceneRenderer interface now provides you with an accessormethod for linking a particular SceneLight object into the scene.

Implementing Light Support in SceneRenderer
The bulk of the work that needs to be doneis within the SceneRenderer. cpp filewhere you take the SceneLight object that you defined earlier and work it into theavailable OpenGL commands. Listing 7.5 details what it is you are modifying.
LISTING 7.5 Modifications to SceneRenderer. cpp

void SceneRenderer: :setlLight(int light_slot, ScenelLight& oLight)
{

m_oLights[light_slot] = oLight;
GLenum eLight = GL_LIGHTO;
switch(light_slot)

{

case 1:

eLight = GL_LIGHT1;
break;

case 2:
eLight = GL_LIGHT2;

break;

case 3:
eLight = GL_LIGHT3;

break;

case 4:
eLight

break;
GL_LIGHT4;

case 5:
eLight

break;
nn GL_LIGHT5;

case 6:
eLight

break;
GL_LIGHTS;

More OpenGL Techniques

~~
153

case 7:
eLight = GL_LIGHT7;

break;

float ambient[4];
float diffuse[4];
float position[4];

ambient[0] = oLight.m_vecAmbient.x;
ambient[1] = oLight.m_vecAmbient.y;
ambient[2] = oLight.m_vecAmbient.z;
ambient[3] = oLight.m_vecAmbient.w;

diffuse[0] = oLight.m_vecDiffuse.x;
diffuse[1] = oLight.m_vecDiffuse.y;
diffuse[2] = oLight.m_vecDiffuse.z;
diffuse[3] = oLight.m_vecDiffuse.w;

position[0] = oLight.m_vecPosition.Xx;
position[1] = oLight.m_vecPosition.y;
position[2] = oLight.m_vecPosition.z;
position[3] = oLight.m_vecPosition.w;

glLightfv(eLight, GL_AMBIENT, ambient);
// Set our ambience values (Default color without direct light)

glLightfv(eLight, GL_DIFFUSE, diffuse);
// Set our diffuse color (The light color)

glLightfv(eLight, GL_POSITION, position);
// This sets our light position

glEnable(eLight);
// Turn this light on

//if we're setting a light, then at least we should
//enable lighting
glEnable(GL_LIGHTING);
glEnable(GL_COLOR_MATERIAL)s

154 Game Programming in C++: Start to Finish

Sample Demonstration

Included in the source code for this chapteris the BasicLight demonstration pro-ject. It is an example of how to create a new SceneLight object and adjust some basic
lighting properties for use in your rendering pipeline.

ALPHA-BLENDING AND TRANSPARENCIES

Blending operations within OpenGL enables you to create effects using trans-
parencyin your scenes. Blending allows you to create or simulate water, windows,
glass, and just about any object that you want to be able to see through.

Blending is also most often used for rendering textured sprites and back-
grounds, as you can then use the help of the alpha channel information stored in
your texture data to seamlessly display your sprite in your scene. Normally when
you create a texture or other image that you want to use within your game, the
image data is stored in a format containing the three common Red-Blue-Green
channels. Some additional image formats,such as the popular Targa (or TGA), en-able you to access additional information stored in the Alpha channel, which has
the added benefit of helping OpenGL calculate which sections to draw and which
should be blended with the background scenery.

When you enable any blending operations in the pipeline,it is a signal for
OpenGL to combine the color information of the incoming primitive with the
color data that already exists within the frame buffer. The result is then stored back
into the frame buffer. Color values are typically represented within OpenGL in the
RGBA format. This means the RGB values represent the red, green, and blue col-
ors, with the alpha component representing the opacity of the object. The lower the
opacity of an object, the more transparent itis.

In this case, the alpha channel acts as a mask for determining how opaque or
transparenta texel is. A texel containing the actualsprite data has an opaque alphachannel value (1.0f), but a texel outside of the sprite should contain a fully trans-
parent alpha channel value (0.0f).

The blending equation used by OpenGL is shown in Equation 7.1.

(RsSr + RdDr,GsSg + GdDg, BsSb +BdDb, AsSa + AdDa) (7.1)

The Sand D components are the source and destination blend factors that youspecify with the g1BlendFunc method. The incoming primitive is labeled the source,and the currently stored pixel within the frame buffer is referred to as the destination.

More OpenGL Techniques

~~
155

Listing 7.6 provides a sample of using some blending within the scene, as you
will be placing two textured objects within the scene.

LISTING 7.6 Sample Blending

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
gllLoadIdentity();

//snip

//enable blending states
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

/ snip

//render a simple object..this could be a window, etc
//specify an alpha channel of 0.5 in order to allow
//us to see through this object
glBegin (GL_TRIANGLES) ;

glColor4f(1.0f, 1.0f, 1.0f, 0.5);
//vertex 1, 2, 3, 4, 5, 6

glEnd();

glFlush();
SDL_GL_SwapBuffers() ;

The g1BlendFunc method is the one responsible for letting the OpenGL context
know which blending operation to perform on the source and destination pixel colors.

) For the majority of the transparency effects used in your game, you will only need
ON THE CD to use the GL_ONE_MINUS_SRC_ALPHA blending calculation to properly render trans-

parent artifacts to the screen.

Sample Demonstration

Now that you have been given an introduction to using and enabling blending cal-

culations within OpenGL, you can see how this works in the BasicBlending sample

(<>included on the CD-ROM. You need to indicate only which states to switch the

ame graphics pipeline to, and the underlying OpenGL layer will handle the rest.

156 Game Programming in C++: Start to Finish

VERTEX ARRAYS

Until now you have been defining and rendering simple objects for use in rendering
with OpenGL. There will comea time, however, when you need to work with vari-
ous models composed of hundreds or thousands of vertices in your game world. De-
claring each of these models within your code is just not a practical solution.

Vertex arrays give you a way to store large batches of vertices within different
types of arrays. For example, you could store the vertices containing position in-
formation in one array, the vertex texture information in another, and so on. This
design is open enoughto let you decide how you wantto store and batch your scene
data, while allowing OpenGL to optimize the location in memory where your ver-
tices are stored. Depending upon the available memory on your graphics card,
OpenGL can either store your vertex data in video memory or system memory.

To use vertex arrays, you must enable/disable them using a slightly different
function pair of glEnableClientState/glDisableClientState. The parameters you
use in each method define the type of array you want to enable or disable.

The type of array you can enable or disable is shown in Table 7.1

TABLE 7.1 Vertex Array Types

Flag Description
GL_COLOR_ARRAY ‘Contains color info for each vertex
GL_EDGE_FLAG_ARRAY Contains edge flags for each vertex
GL_INDEX_ARRAY Contains indices to the color palette for each

vertex

GL_NORMAL_ARRAY Contains normal information for each vertex
GL_TEXTURE_COORD_ARRAY Contains texture coordinate data for each vertex
GL_VERTEX_ARRAY Contains position of each vertex

PN Listing 7.7 demonstrates a way to set up vertex arrays, contained in the Ba-
ovmecd sicVertexArray sample project on the CD-ROM.

LISTING 7.7 BasicVertexArray

// Array of all vertex data. It is just a plain unit square
sVertex SquarePoints[4] =

More OpenGL Techniques

{ 1.0f, -1.0f, 0.0f },
{ -1.0¢, -1.0f, 0.0},
{ 1.08; +08, 0;01 ¥,
{ 1.0f, 1.0f, 0.0f }

bs;

// Stucture to hold all texture coordinate information
struct sTexCoords
{

float t, uj;

bs

// Array of all texture coords for each point.
sTexCoords SquareTexCoords[4] =

{

{ 1.0f,.0:0F };
{ 0..0f% 0.0F.};
{ 0.0f, 1.0f },
{ 1.0f, 1.0f }

bs

// Structure to hold all colors for each point.
struct sColor
{

float r, g, b, a;
}s

// Array of all colors for each point. Every side is a different
//color for a more interesting demo

sColor SquarePointColors[4] =

{

{ 1.0f,-0.0f; 1.0f, 1.0f },
{ 1.0f, 0.0f; 1.0%, 1.0f .},

{ 1+40F 08% +:0F; 1:0};
{ 0.5f, 4.0f, 1.0%, 1:07)

};

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

157

158 Game Programming in C++: Start to Finish

/] Translate and rotate the object.
glTranslatef(0.0f, 0.0f, -6.0f);
glRotatef(-50.0f, 1.0f, 0.0f, 0.0f);
glRotatef(-15.0f, 0.0f, 1.0f, 0.0f);

// Bind the texture.
glBindTexture (GL_TEXTURE_2D, square_tex);

// Enable all client states we are using.
glEnableClientState(GL_VERTEX_ARRAY) ;
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState (GL_TEXTURE_COORD ARRAY);

// Load the data to each pointer type we need.
glVertexPointer(3, GL_FLOAT, 0, SquarePoints);
glColorPointer(4, GL_FLOAT, 0, SquarePointColors);
glTexCoordPointer(2, GL_FLOAT, 0, SquareTexCoords);

// Draw the entire object.
glDrawArrays (GL_QUADS, 0, 4);

// Disable all the client states we enabled.
glDisableClientState (GL_VERTEX_ARRAY);

glDisableClientState(GL_COLOR_ARRAY) ;

glDisableClientState(GL_TEXTURE_COORD ARRAY);

SDL_GL_SwapBuffers();

Vertex arrays help to speed up the rendering process through OpenGL, as they
offload more vertex processing to the video hardware rather than have the CPU
spend precious cycles feeding the pipeline one vertex at a time.

THE OPENGL EXTENSION MECHANISM

An important design aspect of the OpenGL API is the concept of the extension
mechanism. Because graphics hardware capabilities often advance more rapidly
than the core specification can keep up with, vendors have the ability to add new
rendering features to expose any new functionality in the graphics hardware.

When you want to take advantage or query the extensions supported by the
current OpenGL context, you need to parse through a character array return by the
glGetExtensions function.

More OpenGL Techniques

~~
159

ARB: An extension approved by the OpenGL ARB

EXT: An extension agreed upon by multiple vendors

NV: A proprietary extension of NVIDIA Corporation
ATI: A proprietary extension of ATI Technologies Inc.

APPLE: A proprietary extension of Apple Computer Inc.

The simplest method of extension queryingis to search for the name of the ex-
tension within the space delimited list of extensions supported on the hardware re-
turned by the glGetExtensions function. Listing 7.8 demonstrates one way of
handling this mechanism, which is defined within the SceneRenderer.

LISTING 7.8 Simple Method to Query Extensions

bool SceneRenderer::isExtensionSupported(const String& ext)

{

int pos = 0;
bool supported = false;
int n = (int)ext.length();

String extensions ((char *)glGetString(GL_EXTENSIONS));
while (!supported)

{

//if the extension defined in string 'ext' is within 'extensions'
if (extensions.compare(pos, n, ext) >= 0)
{

return true;
}

pos = extensions.find(' '

, pos) + 1;

if(pos <= 0)
return false;

}

return false;
}

After you have determined whether your video hardware can support the de-
sired extension, simply use the SDL_GL_GetProcAddress method to grab the neces-

sary function pointer from the OpenGL ICD provided by the video hardware
“vendor. You learn more about thisas you go through some extensions throughout
this chapter.

Game Programming in C++: Start to Finish

is Be careful when using extensions in your game. It is important to verify that the
peor desired extension is supported, along with a backup procedure in case it is not

available.

MULTITEXTURING

A common use ofthe extension mechanism is to query the video hardware for mul-
titexturing support. Multitexturing is the practice of combining the data of two or
more textures to the same set of vertices.

For example, one common use of multitexturing in a game might beto display
scorch marks on a building wall. The data from the scorch texture can be applied
to the texture information of the building exterior and presented in one pass
through the pipeline.

The OpenGL Architecture Review Board defines multitexturing specification
as a set of texture units that form a chain. Each texture unit passes its outputto the
inputs of the next texture unit in the chain until the final productis rasterized to the
OpenGL framebuffer. Listing 7.9 details how to query the hardware for multitex-
turing support.

LISTING 7.9 Querying Extensions for Multitexturing Support

/ /Somewhere in the file, include a definition for the function.
//This can be directly cut and pasted from the glext.h header
//file.
PFNGLMULTITEXCOORD2FARBPROC glMultiTexCoord2fARB = NULL;

//pRenderer is a valid SceneRenderer pointer
if (pRenderer->isExtensionSupported("GL_ARB_Multitexture"))

{

//the hardware supports this extension, so load the handle to the
//relevant function using SDL_GL_GetProcAddress
pglMultiTexCoord2fARB = (PFNGLMULTITEXCOORD2FARBPROC)

SDL_GL_GetProcAddress("glMultiTexCoord2fARB");

}

Ceri A possible backup procedure you might want to try if the multitexturing extension
ON THE CD is not supported is multipass rendering in which you would set your bottom layer

texture, render the quad, set the bottom layer texture again with the overlay, and
then re-render the quad again using the same vertices.

More OpenGL Techniques

~~
161

Working with the Texture Units

ON THE CD

A single texture unit is composed of the texture image, a texture matrix stack, and
some filtering parameters, among other useful properties.

Using the glActiveTextureARB function, you need to specify the current texture
unit that you are assigning any texture parameters. After this, all of the glTexIm-
age*(), glTexParameter*(), glTexEnv*(), glTexGen*(), andthe glBindTexture
functions will affect the chosen texture unit.

Since you are applying more than one texture for the surface you are working
with, you need a way to define multiple sets of texture coordinates. The glmMulti-

TexCoord2fARB function allows you to do this within the current texture unit. You
must use this method before you specify the vertex position within the
glBegin/glEnd pair. Listing 7.10 demonstrates one way to accomplish multitextur-
ing taken from the /chapter_07/BasicMultitexturing sample on the CD-ROM.

LISTING 7.10 Multitexturing

//some multitexturing function pointers
PFNGLMULTITEXCOORD2FARBPROC glMultiTexCoord2fARB = NULL;

PFNGLACTIVETEXTUREARBPROC glActiveTextureARB = NULL;

PFNGLCLIENTACTIVETEXTUREARBPROC glClientActiveTextureARB = NULL;

if (peon::EngineCore::getSingleton().getRenderer()-
>isExtensionSupported(

"GL_ARB_multitexture"))

glMultiTexCoord2fARB = (PFNGLMULTITEXCOORD2FARBPROC)

SDL_GL_GetProcAddress("glMultiTexCoord2fARB");

glActiveTextureARB = (PFNGLACTIVETEXTUREARBPROC)

SDL_GL_GetProcAddress("glActiveTextureARB");

glClientActiveTextureARB = (PFNGLCLIENTACTIVETEXTUREARBPROC)

SDL_GL_GetProcAddress("glClientActiveTextureARB");

//load your textures into OpenGL
SceneRenderer* pRenderer =

EngineCore::getSingleton().getRenderer();
SceneTexture* pTex1 = pRenderer->

loadImage("data\\textures\\brick.bmp");

162 Game Programming in C++: Start to Finish

SceneTexture* pTex2 = pRenderer->
loadImage("data\\textures\\scorch.bmp");

//activate the first texture in the pipeline
glActiveTextureARB(GL_TEXTUREO_ARB) ;glEnable (GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D, pTex1->getTex());

//activate the second texture in the pipeline
glActiveTextureARB(GL_TEXTURE1_ARB);

glEnable (GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, pTex2->getTex());
//add other texture manipulation states here

//render your quad here with multitexturing support!
glBegin(GL_QUADS) ;

glNormal3f(0.0f, 0.0f, 1.0f); //normal coming out of the screen

glMultiTexCoord2fARB(GL_TEXTUREO_ARB, 1.0f, 1.0f);
glMultiTexCoord2fARB(GL_TEXTURE1_ARB, 1.0f, 1.0f);
glvertex3f(1.0f, 1.0f, 1.0f);

glMultiTexCoord2fARB(GL_TEXTUREO_ARB, 0.0f, 1.0f);
glMultiTexCoord2fARB(GL_TEXTURE1_ARB, 0.0f, 1.0f);
glvertex3f(-1.0f, 1.0f, 1.0f);

g1lMultiTexCoord2fARB(GL_TEXTUREO_ARB, 0.0f, 0.0f);
glMultiTexCoord2fARB(GL_TEXTURE1_ARB, 0.0f, 0.0f);
glvertex3f(-1.0f, -1.0f, 1.0f);

glMultiTexCoord2fARB(GL_TEXTUREO_ARB, 1.0f, 0.0f);
glMultiTexCoord2fARB(GL_TEXTURE1_ARB, 1.0f, 0.0f);
glvertex3f(1.0f, -1.0f, 1.0f);

glEnd();

CHAPTER EXERCISES

1. Inspect further OpenGL documentation for other uses and properties
available in the lighting engine of the API. Experiment with spotlights, am-
bienteffects, and attenuation to create the lighting effect you want and add
them to the sceneLight object in the Peon engine.

More OpenGL Techniques

~~
163

2. Although you learned only the basics about blending, experiment with dif-
ferent colors, alpha buffer values, and even blending operationsto see how
they affect the output to your final scene.

3. Be sure to inspect the OpenGL specification for the additional extensions
that are available to you. A large number of useful ones available can help
to streamline your scene.

SUMMARY

Although you still have not learned every aspect of OpenGL programming, you
have quickly been introduced to a lot of topics. It is important to understand the
basics first, before you can jump ahead to some more advanced effects that you will
learn later in this book. The approach of this chapter was to build upon your basic
OpenGL knowledge. You learned about how OpenGL processes commandsto light
your scene, along with how to use blending operations to create the transparency
effect you can use in your games. Vertex arrays are methods that you can use to
speed up the vertex rendering within your scene, as they have the capability to
cache large batches of vertices that you can specify in the scene or load from a
model. You were also introduced to how to query the OpenGL extension mecha-
nism to add multitexturing capabilities to your repertoire. You can now use
OpenGL within your game projects. In the next chapter you will learn how to use
the OpenGL objects you created in the Peon engine, which will help you under-
stand some basic concepts around scene management and how to improve the ren-
dering performance of your game world.

Scene Geometry
Management

Chapter Goals

® Introduce the OpenGL depth buffer.
®m Introduce view frustum culling.
® Introduce and discuss scene graphs.
m Create a simple scene graph within the Peon engine.

in your game world, you will notice scene performance begin to drastically
degrade. With the Fixed Function Pipeline model that you have been work-

ing with so far, pixel visibility is not determined until the final transformation stage
of the pipeline. As your game world data increases, relying on the hardware to
process the information is simply not enough,as you are potentially sending thou-
sands of primitives to the pipeline that are not even relevant to the scene. Remov-
ing objects and primitives before they reach the pipeline is labeled in a broad sense
as “culling techniques,” which you will learn more of in this chapter.

A
s more objects and state changes in the graphics pipeline start to accumulate

165

166 Game Programming in C++: Start to Finish

THE DEPTH BUFFER

The bulk of scene geometry management techniques involves the attempt to orga-
nize your scene such that unnecessary pixel information is not sent through the
graphics pipeline. Another concept involved in this discussion on geometry man-
agement is the theory behind hidden surface removal. In a more concrete imple-
mentation of hidden surface removal, the OpenGL pipeline provides an additional
buffer known as the depth buffer. As the pipeline processes the pixel data for the
scene to be presented to the video display, the depth information (z coordinate) is
stored in this buffer which is usually represented as a two dimensional array. As
pixel information is added to the array, the hardware determinesif another pixel
already occupies the same position. If this z-coordinate collision is detected, then
the hardware will overwrite the location in memory with whichever pixel is closest
to the camera. The depth buffer preserves the illusion of depth within a scene by
overlapping objects which are further away by objects that are closer to the camera.

Although you will gain much more experience with the depth buffer in
OpenGL, you will only ever really need to worry about when to enable or disable it.
Using the familiar glEnable/glDisable commands with the GL_DEPTH_TEST para-
meter, you can enable or disable OpenGL from using the depth information when
rendering the scene. Normally you would keep the usage of the depth buffer en-
abled to maintain proper object depth positioning. A situation where you might
think of disabling the depth buffer is when you wish to achieve a transparency ef-
fect. For example, an object passing behind a window would require the disabling
of the depth buffer in order to ensure the object viewable from the window is not
removed from the scene.

VIEW FRUSTUM CULLING

A common method offiltering down the amount of vertices sent through the
graphics pipeline is a technique known as View Frustum culling. This technique in-
volves taking your view and projection matrices and calculating a bounding box for
the entire view volume. If a vertex (or mesh) is marked as being outside of this
bounding box,it is not visible by the currently active camera, so you do not need
to send it through the pipeline.

In Figure 8.1, the area cone projected by the scene’s camera is segmented into
six planes.

Scene Geometry Management

~~
167

Horizontal FOV |

Top
|

Far

Vertical FOV

A Right

.
Bottom

Eyepoint

FIGURE 8.1 The camera's View Frustum.

As you can see from Figure 8.1, you need to extract the plane information for
the six clipping planes formed by the View Frustum and then useit to test whether
or not your vertex lies somewhere within, on, or outside these boundaries (thatis,
clipping spaces).

The Scenecamera object of the Peon engine that was introduced in Chapter 5,

“Graphics Programming Mathematics,” contains the necessary code for using a
View Frustum culler agent with your applications. Please inspect Listing 8.1 for
using this culler object.

LISTING 8.1 Calculating the Six Planes of the View Volume

void SceneCamera::generateViewFrustum()
{

float matProj[16]; // projection matrix
float matView[16]; // model-view matrix
float mat_mvp[16]; // model-view-projection matrix

//9lGetFloatv with the -GL_PROJECTION_MATRIX flag will
//pull the projection matrix from the FFP.

glGetFloatv(GL_PROJECTION_MATRIX, matProj);

168 Game Programming in C++: Start to Finish

//glGetFloatv with the GL_MODELVIEW MATRIX flag will pull
//the view matrix from the FFP.
glGetFloatv(GL_MODELVIEW_ MATRIX, matView);

// The product of the projection matrix and the model-view matrix
/ | produces the concatenated model-view-projection matrix. Note
//that the Matrix44 object could be used here, but the longhand
//demonstrates and reinforces the calculations.
mat_mvp[0] = matView[0] * matProj[0] + matView[1] * matProj|

4] + matView[2] *

matProj[8] + matView[3] * matProj[12];

mat_mvp[1] matView[0] * matProj[1] + matView[1] * matProj[5]
matView[2] matProj[9] + matView[3] * matProj[13];
mat_mvp[2] matView[O] * matProj[2] + matView[1] * matProj[6]
matView[2] matProj[10] + matView[3] * matProj[14];
mat_mvp[3] matView[0] * matProj[3] + matView[1] * matProj[7]
matView[2] matProj[11] + matView[3] * matProj[15];

mat_mvp[4] matView[4] * matProj[0] + matView[5] * matProj[4]
matView[6] * matProj[8] + matView[7] * matProj[12];
mat_mvp[5] matView[4] * matProj[1] + matView[5] * matProj[5]
matView[6] matProj[9] + matView[7] * matProj[13];
mat_mvp[6] matView[4] * matProj[2] + matView[5] * matProj[6]
matView[6] matProj[10] + matView[7] * matProj[14];
mat_mvp[7] matView[4] * matProj[3] + matView[5] * matProj[7]
matView[6] matProj[11] + matView[7] * matProj[15];

mat_mvp[8] matView[8] * matProj[0] + matView[9] * matProj[4]
matView[10] matProj[8] + matView[11] * matProj[12];
mat_mvp[9] matView[8] * matProj[1] + matView[9] * matProj[5]
matView[10] matProj[9] + matView[11] * matProj[13];
mat_mvp[10] matView[8] * matProj[2] + matView[9] * matProj[6]
matView[10] matProj[10] + matView[11] * matProj[14];
mat_mvp[11] matView[8] * matProj[3] + matView[9] * matProj[7]
matView[10] matProj[11] + matView[11] * matProj[15];

mat_mvp[12] matView[12] * matProj[0] + matView[13] * matProj[4]
matView[14] * matProj[8] + matView[15] * matProj[12];
mat_mvp[13] matView[12] * matProj[1] + matView[13] * matProj[5]
matView[14] matProj[9] + matView[15] * matProj[13];
mat_mvp[14] matView[12] * matProj[2] + matView[13] * matProj[6]
matView[14] matProj[10] + matView[15] * matProj[14];

Scene Geometry Management

~~
169

mat_mvp[15] = matView[12] * matProj[3] + matview[13] * matProj[7] +

matView[14] * matProj[11] + matView[15] * matProj[15];

// This will extract the RIGHT side of the frustum
m_oFrustum[RIGHT].normal.x = mat_mvp[3] - mat_mvp[0];
m_oFrustum[RIGHT].normal.y mat_mvp[7] - mat_mvp[4];
m_oFrustum[RIGHT].normal.z = mat_mvp[11] - mat_mvp[8];

m_oFrustum[RIGHT].d = mat_mvp[15] - mat_mvp[12];

// normalize the RIGHT Plane using the a,b,c and d components
m_oFrustum[RIGHT].normalise();

// This will extract the LEFT Plane of the frustum
m_oFrustum[LEFT].normal.x = mat_mvp[3] + mat_mvp[O];
m_oFrustum[LEFT].normal.y mat_mvp[7] + mat_mvp[4];
m_oFrustum[LEFT].normal.z = mat_mvp[11] + mat_mvp[8];

m_oFrustum[LEFT].d = mat_mvp[15] + mat_mvp[12];

n

// normalize the LEFT Plane
m_oFrustum[LEFT].normalise();

// This will extract the BOTTOM Plane of the frustum
m_oFrustum[BOTTOM].normal.x = mat_mvp[3] + mat_mvp[1];
m_oFrustum[BOTTOM] .normal.y mat_mvp[7] + mat_mvp[5];
m_oFrustum[BOTTOM] .normal.z = mat_mvp[11] + mat_mvp[9];
m_oFrustum[BOTTOM].d = mat_mvp[15] + mat_mvp[13];

// Normalize the BOTTOM Plane
m_oFrustum[BOTTOM] .normalise();

// This will extract the TOP Plane of the frustum
m_oFrustum[TOP].normal.x = mat_mvp[3] - mat_mvp[1];
m_oFrustum[TOP].normal.y = mat_mvp[7] - mat_mvp[5];
m_oFrustum[TOP].normal.z=mat_mvp[11] - mat_mvp[91;

m_oFrustum[TOP].d = mat_mvp[15] - mat_mvp[13];

// Normalize the TOP Plane
m_oFrustum[TOP].normalise();

// This will extract the BACK Plane of the frustum
m_oFrustum[BACK].normal.x = mat_mvp[3] - mat_mvp[2];
m_oFrustum[BACK].normal.y = mat_mvp[7] - mat_mvp[6];
m_oFrustum[BACK].normal.z=mat_mvp[11] - mat_mvp[10];

m_oFrustum[BACK].d = mat_mvp[15] - mat_mvp[14];

|

170 Game Programming in C++: Start to Finish

// Normalize the BACK Plane
m_oFrustum[BACK].normalise();

// This will extract the FRONT Plane of the frustum
m_oFrustum[FRONT].normal.x = mat_mvp[3] + mat_mvp[2];
m_oFrustum[FRONT].normal.y mat_mvp[7] + mat_mvp[6];
m_oFrustum[FRONT] .normal.z mat_mvp[11] + mat_mvp[10];

m_oFrustum[FRONT].d = mat_mvp[15] + mat_mvp[14];
n

// Normalize the FRONT Plane
m_oFrustum[FRONT].normalise();

After you have obtained yoursix View Frustum planes, you can begin testing
where the bounding sphere around each mesh is in relation to the clipping planes.
Listing 8.2 demonstrates one way to accomplish this using the math you will learn
about in Chapter 13, “Collision Detection and Physics Techniques.”

LISTING 8.2 Testing Bounding Sphere with the Plane

bool SceneCamera::isSphereInFrustum(float x, float y, float z,
float fRadius)

{

for(int i = 0; i < 6; ++i)
{

if(m_oFrustum[i].normal.x * x +

m_oFrustum [i].normal.y * y +

m_oFrustum [i].normal.z * z +

m_oFrustum [i].d <= -fRadius)

return false;
}

return true;
}

Ch Check the /chapter_08/BasicviewFrustum sample contained on the CD-ROM.
wm? You will be able to enable or disable the View Frustum testing to see for yourself

how performanceis affected.

BASIC SCENE HIERARCHY MANAGEMENT

While the View Frustum culling technique is an important addition to your graph-
ics repertoire, there is still room for improvement, as you are always processing

Scene Geometry Management

~~
171

every mesh within the game world through the View Frustum calculations no mat-

ter where the relative positions are from the player.
In order to improve this process, most 3D engines create and use a hierarchy

structure to organize and model mesh and primitive data within the game world.

These hierarchy approaches are known as scene graphs, and they can offer a tremen-
dous performance boost to your application.

Most scene graphs are modeled asatree structure also known asdirected acyclic

graphs (DAGs) since scene graphs cannot contain cycles. DAG structures are formed
such that a single parent node can have up to 7 child nodes, which can themselves
be parents to other children. Child nodes lower down in the hierarchy are forbid-

den from then attempting to become parents to nodes higher up on the graph,
which would form a cycle (or a loop). Each child node can contain the objects you
want to draw along with other information that you are about to learn. Figure 8.2

details a simple DAG structure.

Scene Root

Node Node

ek ong wind

FIGURE 8.2 Simple DAG structure.

The immediate benefit to this approach of scene construction can be seen when

you want to add large structures such as office buildings to your game world. Each

building could itself contain #n number of nodes that represent each room. Each

room could then contain many child nodes, which describe any object in the room
such as a table, desk, chair, cactus, and so forth. If the entire building is marked as

invisible to the player, then there is no need to process any child nodes within the

structure. Figure 8.3 presents this simple graph.
An additional benefit to using scene graphsis also realized when you attempt

to move or manipulate the parent node object. Each child node will then move to

follow the parent, which saves you from having to recompute any transform oper-
ations should you be forced to move objects within the game world.

172 Game Programming in C++: Start to Finish

Office

Reception

FIGURE 8.3 Simple office scene graph.

For example, in the office building scene, if you move your desk you tend to
also keep your lamp, monitor, and other desk accessories.

Sorting Rendering States

Using a scene graph approach to contain your world objects not only can increase
rendering performance of your scene, butit can also serve to minimize any unnec-
essary state changes within the graphics pipeline itself. Usually any change of state
within the graphics pipeline such as setting a texture, or adjusting lighting or fog
calculations, has an associated cost of performance on your 3D hardware. Even on
the newest hardware available, it is always a benefit to your game to minimize as
many state changesas possible.

Fora real-world example, imagine that you are rendering a large collection of
similar objects such as a fleet of jet fighters. Each jet fighter will have a multitude of
m state changes in order to properly render its craft texture, rubber tires, metallic
landing gears, and so on. Without any sorting, the pipeline might need to make m
X n state changes (mm states multiplied by # fighterjets). Compare this to a state sort-
ing algorithm approach in which you could instead keep the current state to render
each appropriate section of the n fighter jets (thatis, render all the rubber tires and
then all the landing gears, and so on). This would then reduce your necessary ren-
dering state changes to an m x I algorithm.

Animation Rendering

Using a scene graph approach can also aid with rendering or manipulating any an-
imated meshes. The animation can be constructed in the hierarchy to allow easy
calculation of any transforms that need to be applied to various nodesin the graph.

Scene Geometry Management

~~
173

For example, your player mesh within the game world probably will contain
two arms and two legs connected by a torso. Several animations can be rendered,
depending upon the associative state in which the player is currently. There might
be walking, running, death animations, and so forth. After you have calculated

which state the player is in, you can then transform each child node of your player
mesh to perform the desired animation.

INTRODUCTION TO THE PEON SCENE GRAPH

You should now be able to create your own rudimentary node hierarchy to process

your scene objects.
You begin with the SceneRoot and ISceneNode base object definitions within the

Peon game engine. The basic algorithm the scene manager follows is to traverse
each 1SceneNode objectin the hierarchy and adjust the rendering pipeline accord-

ingly. At a high level your game objects should all fit somewhere within the hierar-

chy to allow for smooth rendering and collision detection. Listing 8.3 details the

base element ofthe graph, the 1SceneNode.

LISTING 8.3 ISceneNode.h

namespace peon
{

Ihe
* This object is used as our base root interface for anything
* that needs to be added to the scene hierarchy */

class PEONMAIN_API ISceneNode : public IUnknown

{

protected:
/** Is this node visible? */
bool m_bIsVisible;

/** The parent node */
ISceneNode* m_pParentNode;

/** Linked list of our child nodes */
std: :list<ISceneNode*> m_oChildrenNodes;

/** This method is used to prepare the node for rendering.
* Last minute state changes, etc. should be done here *f

virtual void onPreRender();

174 Game Programming in C++: Start to Finish

/** This method is used to render the node. */
virtual void onRender();

/** Add a child node to our list */
virtual void addChildNode(ISceneNode* pChild);

/** Drop a child node from this current node */
virtual void dropNode(ISceneNode* pChild);

[X*:snipl */
bs

The 1SceneNode is an abstract base class entity that contains the common set
of methods and variables that all nodes within the scene graph will share. Any
ISceneNode object can be a parent to a hierarchy of child nodes, while also being
a child node itself within the scene graph. One of the strengths of a hierarchy
approach to object management such asthisis thatif you should mark one node in
the tree as invisible, then the scene graph manager should skip the processing of all
the child nodes.

The SceneRoot object within the Peon engine contains not only the top-most
node ofthe graph, known as the root node, but also a host of useful objects for pro-
cessing and rendering the graph. Listing 8.4 details the SceneRoot object.

LISTING 8.4 SceneRoot.h

namespace peon
{

/** This object represents the topmost (or bottom-most) node
* of the scene hierarchy tree.
x
class PEONMAIN_API SceneRoot : public ISingleton<SceneRoot>,

public ISceneNode
{

public:
[** Constructor */
SceneRoot(SceneRenderer* pRenderer);
[** Destructor */
~SceneRoot();
/** return a reference to this object */
static SceneRoot& getSingleton(void);

Scene Geometry Management

~~
175

/** return a pointer to this object */
static SceneRoot* getSingletonPtr(void);
[*% snipl *~/

bs
}

As you can see, this object implements the Singleton design pattern. You want

only one scene graph within your gameat a time, and thisis an easy way to imple-
ment this. During the first instantiation of this object, you will need to pass a han-
dle to the SceneRenderer interface, which will be used to render the nodes in the

graph as theyare traversed.

Scene Graph States

As you learn more about whata scene graph is and what it can provide for your ap-
plication, an important consideration is any rendering state information. Concep-
tually, the scene graph contains not only the objects within your scene, but also any
necessary transformations and rendering state information to render those objects.
In other words, it is not enough to store the object you wantto insert into the hi-

erarchy; you also need to specify exactly how this object will appear.

Scene Graph Passes

To maximize the efficiency of the rendering process behind the scene graph, you will

need some way of sorting the nodesof the graph byeitherthe type of node or the re-
quested rendering operation for the node. This is important, as you could potentially
havea real mix of techniques and meshes within the same scene at one time. For ex-

ample, for a scene involving many objects of a similar type, you can optimize the

processing by generally sorting the scene objects by the texture, then by any buffered

vertex information. Keeping in mind your introduction to the OpenGL pipeline,

you should attempt to minimize state switching as much as possible.
In other words, by sorting the scene bytexture, you can achieve something like:

m Select Alien Ship texture handle
®m For each Alien Ship, render vertices

Instead ofa situation thatis largely unoptimized and problematic:

m For each Alien Ship: select Alien Ship texture and then render the vertices

Optimizing the scene graphis beyond the scope of this material, however the

preceding should be kept in mind when attempting to find any performance criti-
cal areas.

176 Game Programming in C++: Start to Finish

Scene Graph Traversal

For processing the nodes in the scene graph, either during rendering passes or for
animation and collision, you will need a somewhat efficient method to traverse the
data structure. You were just introduced to the concepts on minimizing state
changes within the graphics pipeline, and so this must be kept in mind when per-
forming any scene traversal. You must also rememberto flag nodes, which are not
visible as there is no pointin traversing the tree to any child nodes, when the par-
ent object cannot be seen by the player. The algorithm that you will use for the
scene graph traversal is meant to be quite simple.

For each node in the hierarchy, the tree first determines whether itis visible or
notto the player.

If it is visible, then check which node type it is. If the node is a render state, then
process the render state commands. Otherwise, if it is an opaque (solid) object, add
it to the solid objects display list. If the object is transparent, then add it to the trans-
parent display list.

To render the scene graph you would then process each list, first applying the
necessary OpenGL render state commands. Next you would then process each
opaque object. Finally, you would then render the transparent objects in the scene.

BINARY SPACE PARTITIONING TREES

Binary Space Partitioning trees (BSP trees) were first made popular as a graphics
data structure with the release of Wolf3D and Doom by Id Software. Although they
might not make an appearance in every 3D graphics application, they can still have
their place in the majority of engines made today depending upon your game world
layout.

Typically when using a BSP for your level or scene, you would create a separate
BSP compiler responsible for taking the map data and compiling it into a binary
format (known as a WAD for the Id games), which the engine can then use for the
traversal/rendering process. In the case of Wolf3D and Doom, these two compo-

nents were separated so that the level builders could build and test their levels with-
out the reliance of the engine.

OCTREE DATA STRUCTURE

You can also create a hierarchy that subdivides the scene into eight smaller segments,
which is referred to as an octree. The purpose ofthis structure is to allow for an
increase of complexity to your scene, while at the same time reducing the overhead

Scene Geometry Management

~~
177

for object visibility calculations. See Figure 8.4, which presents the theoretical view of

your octree.

FIGURE 8.4 Octree visualization.

Building Your Octree

Although somewhat intensive, the algorithm first cycles through every vertex in the

scene adding the x, y, and z components together. When this is done, the center

point ofthe world is calculated by dividing each component by the total number of
vertices in the scene. This information becomes used as the overall encompassing
cube, which you then subdivide in your data structure.

The Occluder Query

Although you have touched upon a large number of algorithms used for culling
objects before they are passed into the graphics pipeline, there is still definite room
for improvement. Most geometry management techniques either want to cull too

many objects, or too few of them, still leaving a large amount of meshes to be sent

through the pipeline.
One facet that you have not yet heard about is the concept of occluders. Oc-

cluders are objects within the scene which partially or fully block the camera from

seeing other objects. Usually an occluder is a large block or building that hides
other smaller buildings behindit.

178 Game Programming in C++: Start to Finish

This is important. Although these small objects pass the View Frustum test,
they will not be seen bythe player, even though the pipeline must process them.

To this extent, the OpenGL ARB has released a small handy occluder extension,
the GL_ARB_occlusion_query. Listing 8.5 defines the function pointer prototypes
that you will need to use when querying for the extension.

LISTING 8.5 Occluder Extension Basics

PFNGLGENQUERIESARBPROC glGenQueriesARB = NULL;
PFNGLDELETEQUERIESARBPROC glDeleteQueriesARB = NULL;
PFNGLISQUERYARBPROC glIsQueryARB = NULL;
PFNGLBEGINQUERYARBPROC glBeginQueryARB = NULL;
PFNGLENDQUERYARBPROC glEndQueryARB = NULL;
PFNGLGETQUERYIVARBPROC glGetQueryivARB = NULL;
PFNGLGETQUERYOBJECTIVARBPROC glGetQueryObjectivARB = NULL;
PFNGLGETQUERYOBJECTUIVARBPROC glGetQueryObjectuivARB NULL;

The first task is to query which extensions are available to you. Listing 8.6 doc-
uments this, although you should be familiar with the code now.

LISTING 8.6 Querying for Occlusion Query Support

//pRenderer is a pre-defined SceneRenderer
if(!pRenderer->isExtensionSupported("GL_ARB_occlusion_query"))

{

/1you just do not have the necessary updated drivers.
//return nicely...
return false;

}

//initialize the function pointers to grab the needed extension
//methods from the vendor provided OpenGL dll..
glGenQueriesARB = (PFNGLGENQUERIESARBPROC)

SDL_GL_GetProcAddress ("glGenQueriesARB");

glDeleteQueriesARB = (PFNGLDELETEQUERIESARBPROC)
SDL_GL_GetProcAddress ("glDeleteQueriesARB");

glIsQueryARB = (PFNGLISQUERYARBPROC)
SDL_GL_GetProcAddress ("glIsQueryARB");

glBeginQueryARB = (PFNGLBEGINQUERYARBPROC)
SDL_GL_GetProcAddress ("glBeginQueryARB");

Scene Geometry Management

~~
179

glEndQueryARB = (PFNGLENDQUERYARBPROC)

SDL_GL_GetProcAddress ("glEndQueryARB") ;

glGetQueryivARB = (PFNGLGETQUERYIVARBPROC)

SDL_GL_GetProcAddress ("glGetQueryivARB") ;
glGetQueryObjectivARB = (PFNGLGETQUERYOBJECTIVARBPROC)

SDL_GL_GetProcAddress ("glGetQueryObjectivARB") ;

glGetQueryObjectuivARB = (PFNGLGETQUERYOBJECTUIVARBPROC)

SDL_GL_GetProcAddress ("glGetQueryObjectuivARB");

The next step is to generate some occlusion query handles that will store the oc-
clusion calculations. Listing 8.7 shows how this is accomplished.

LISTING 8.7 Generate Occlusion Query Handles

GLuint planeQuery = -1;
GLuint boxQuery = -1;

//generate the query objects for the plane and the box

//looks similar to generating texture handles..
glGenQueriesARB(1, &boxQuery 5
glGenQueriesARB(1, &planeQuery);

Occlusion Query Algorithm

The Occlusion Query algorithm is fairly straightforward but can soundalittle awk-

ward at first. You first render every object in the scene in order to capture their z

positions in the depth buffer. Next, you render every object in the scene again so

that the occlusion query can determine the objects visibility status. If the resultant

query finds zero pixels are visible for an object, then it is culled from the scene. List-
ing 8.8 demonstrates how this is done with the box and plane objects you have in

the scene.

LISTING 8.8 Rendering Process using Occlusion Culling

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER BIT);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0f, 0.0f, -1.5f);

Cleanup

Game Programming in C++: Start to Finish

//first render your objects to capture their z-buffer information

//render the plane

//render the box

//now render the objects again but wrap them inside the occluder
//objects
glBeginQueryARB(GL_SAMPLES_PASSED ARB, planeQuery);
{

//render the plane
}

g1EndQueryARB(GL_SAMPLES_PASSED ARB);

//render the box
glBeginQueryARB (GL_SAMPLES_PASSED_ARB, boxQuery);
{

//render the box
}

91EndQueryARB(GL_SAMPLES_PASSED_ARB);

SDL_GL_SwapBuffers();

Do not forget to clean up and deallocate the occluder queries you used in this sam-
ple. Listing 8.9 demonstrates it.
LISTING 8.9 Occlusion Cleanup

glDeleteQueriesARB(1, &boxQuery);
glDeleteQueriesARB(1, &planeQuery);

CHAPTER EXERCISES

1. The scene graph algorithms outlined in this chapter are a basic approachtoscene graph uses. Feelfree to investigate how to optimize the necessary ob-
jects to increase the scene performance.

. Another technique known as portal rendering exists to help out with a
level containing both indoor and outdoor geometry. Is the portal render-
ing technique efficient for every type of scene or level? Why, or why not?

Scene Geometry Management

~~
181

3. After working with the GL_ARB_occlusion_guery extension, list some ad-

vantages and disadvantages you think the algorithm might have. Do you
have any suggestions on how to improve it?

4. Create a small program that will use the occlusion query extension. Create

a wayto enable and disable the occlusion query to verify how it affects the

scene’s performance.

SUMMARY

Properly organizing and constructing the geometry involved in your scene can be

a critical factor in determining how fast you are able to render the game world. Sim-

ply relying on the video hardware to do the work for you is not good enough, and

often one or more software organizations are necessary. You have learned about the

OpenGL depth buffer, binary space partition trees, and the octree modelof scene

organization. Although there are many other techniques out there for geometry

management, the ones you learned about here are a good selection and starting

point for any graphics programmer.
You also learned some more useful objects from the Peon engine, which allow

you to constructa hierarchical scene graph of your game world that makesit easier

to both perform View Frustum calculations and render the objects in the scene.

Oneof the primary aspects of a gameis the quick feedback you receive when you

use an input device to control your player in the game world. In the next chapter,

you focus on adding most of the graphics components involved in the SuperAs-

teroidArena project.

Graphics Timebox

Chapter Goals

® Add some basic objects to SuperAsteroidArena.
m Implement some textured font rendering to display text.

It is finally time to add some graphics to your SuperAsteroidArena project. If

you recall, in Chapter 5, “Graphics Programming Mathematics,” you started to

create a basic skeleton for the game. At this point, you should have a basic

application window along with some stub TApplicationState instances for manag-

ing the state of the game.

TIMEBOX REQUIREMENTS

Before you can begin work implementing new features in the SuperAsteroidArena

project, you will now create some requirements for this timebox. After you check-

out the design document from the CVS repository, the approach ofthis timebox is

183

184 Game Programming in C++: Start to Finish

to implement some basic graphics supportfor the game. A list of requirements youmight consider in a first draft approach is as follows:

Display some textto the player.
Display the asteroids to the player.
Display the player’s ship.
Present the starfield background.
Create some buttons on the main menu for the player.

This is a good requirement listso far and will keep you busy for the majority ofthis timebox.

THE LOGOSTATE

Referring to the design document, the purpose of the Logostate is to display your
company logo (or personal name) before the main title screen. This state is optionaland is purely left to your own discretion. This state is currently composed of the fol-
lowing items, which are presented to the player:

® A starfield background
® Black “letterbox” bars on the top and bottom strips of the screen
® A company logo

THE MAINMENUSTATE

From the design document, the basic purpose of the main menu screen is to pro-vide the player with an entry point for your game. In the previous timebox covered
in Chapter 3, “Introduction to SDL and Windows,” you initially created some stub
state objects, which are acting as placeholders within your game application. In this
timebox, you will now add some meatto these stubs.

Thefirst state you will focus on is the MainMenustate object. This encapsulatesthe main menu ofyour game, whichisthe first state of the game that accepts player
input. Upon entering this state, the player will be presented with the following:

A starfield background
Some slowly moving asteroids
The maintitle of the game
A menu of buttons for the player

Graphics Timebox

~~
185

Loading Common Data

For each application state that you have been presented with thus far, there are

quite a few common objects that are shared among each state. For example, it

seems pointless for each state to create its own Skybox object, when you can create

it once and share it among each state. To centralize and simplify working with

some of these common graphics elements, you can create a new object for the

game; the GraphicsResourceManager.
This object will be responsible for acting as a common hub or datastore for

your texture data and other common graphics artifacts. Listing 9.1 details an out-
line of the manager for you.

LISTING 9.1 GraphicsResourceManager.h

namespace arena
{

[x
* This object is a "wrapper" object around the graphics
* objects that we'll need for the game. This way we can
* try to provide some abstraction layer in case we want to alter
* how our graphics are rendering.
+
class GraphicsResourceManager : public peon::IUnknown
{

protected:
peon: :SceneRenderer* m_pRenderer;
peon: :SceneTexture m_oTextures[ARENA_MAX_TEXTURES];

peon::SceneFont* m_pConsoleFont;
public:

GraphicsResourceManager() ;

~GraphicsResourceManager() ;
bool loadManager();
void unloadManager();

peon::Renderer* getRenderer(){ return m_pRenderer; }

peon::Texture* getTexture(int tex){ return &m_oTextures[tex];

peon::TextureFont* getConsoleFont(){ return m_pConsoleFont; }

bs

186 Game Programming in C++: Start to Finish

For every object that you wantto renderto the screen, you will need to load the
respective texture information. In the onLoadwor1d method ofthis application, youwill load every texture needed for the background, title screen, and the asteroids
themselves. Listing 9.2 demonstrates how thisis done within the MainApp: :onLoad-
World method.

LISTING 9.2 bool MainApp: : onLoadWorld

bool MainApp::onLoadWorld()
{

//load textures, display lists and font stuff here
/ Everything should be done in the GraphicsResourceManager
m_pGraphicsResourceManager = new GraphicsResourceManager();if (Im_pGraphicsResourceManager->loadManager ())

{

//there was an error
return false;

}

return true;
}

Rendering the Starfield

One ofthe first steps you will make in this timebox is to render the backgroundstarfield to the game player. Although this is an easy task,it is a good thing to getout of the way as soon as possible in orderto provide you with some feedback thatthe game isstarting to take shape. The texture information was loaded during the
onLoadWorld method of the MainApp, and the display list for the background wasloaded and compiled as well during this initialization. Listing 9.3 demonstrates
how to render the starfield.

LISTING 9.3 onRender()

void MainMenuState: :onRender()
{

//render the skybox
m_pSkybox->onRender() ;

}

Graphics Timebox

~~
187

Rendering Text to the Player

Adding text support to your gameis an important asset and can help provide some
feedback of the game’s current state along with displaying any helpful messages to
the player. You were introduced to the sceneFont object of the Peon library in

Chapter 6, “Creating an OpenGL Renderer.”
Listing 9.4 demonstrates one way to do this within the GraphicsResourceManager.

LISTING 9.4 Loading the SceneFont

//snip
m_pFontTexture = peon: :EngineCore: :getSingleton().getRenderer()->

loadTexture("data\\textures\\font.png");
m_pFont = peon: :EngineCore: :getSingleton().getRenderer()->loadFont();
//snip

Creating the Graphical User Interface

Althoughit is sometimes tackled fairly late in the project schedule, the presentation
of an interface to your player for manipulating game datais an important and often
critical component of any entertainment product. Reflect on any game you have ex-

citedly purchased in the store, only to install it at home and proceed to fight with

the controls in order to enjoy the gameto its fullest. The Graphical User Interface

(GUI, pronounced as “Goo-ey”) defines the layout and presentation style of any

components thatare used by the player to interface with the game.
Although it is certainly possible to create your own set of GUI tools, it can be

an arduous process for the beginner to tackle. Luckily for you there is a clean library
of GUI objects that allow you to quickly create a mechanism for your player to
interact with the game. In most beginner projects, the GUI system is reduced to a

collection of buttons that allow the player to change the state of the game in a

primitive way. This can even be as simple as providing a main menu that displays a

quit buttonto exit the game. Depending upon the requirements of the game itself,

this simple system can be sufficient. The Crazy Eddie GUI toolkit (CEGUI) was
created for this very purpose: to allow you to get back to working on your game
content, as opposed to spending time on fiddling with GUI controls. The cross-

platform CEGUI toolkit contains more than enough quality GUI widgets which

allow you to present buttons, text boxes, and list boxes along with a host of other
useful objects.

Game Programming in C++: Start to Finish

Initializing the CEGUI Library
The CEGUI system is meantto be a fast and simple toolkit to incorporate in any
project. As such, there is not much that you need to set up or configure when using
the library. The first step of using the toolkit is to create a renderer object with
which you can present the CEGUI widgets. Listing 9.5 details how this is done.

LISTING 9.5 Initializing CEGUI

//first create a renderer to use. Although the toolkit also supports
//Direct3D, you will need the OpenGL interface.
int width = EngineCore: :getSingleton().getRenderer()->getWidth();
int height = EngineCore::getSingleton().getRenderer()->getHeight();
CEGUI: :OpenGLRenderer* renderer = new
CEGUI: :OpenGLRenderer(0,width,height);

/1you next initialize the CEGUI::System singleton object by using this
//created renderer.

new CEGUI::System(renderer);

Thisis all that is needed to set up the CEGUI subsystem. Please inspect more of
the source code of the SuperAsteroidArena project for further details.

THE ACTIVESTATE

After you havefinished adding the necessary components for displaying your ob-
jects in the MainMenuState, the game will switch to the Activestate ifthe player de-
cides to either start a new single-player game orjoin an existing multiplayer session.
Most of the objects that you need to render have already been created.

TIMEBOX EVALUATION

With the addition of most of the preliminary graphics assets into your game, you
should sit down with your original design documentation and evaluate this time-
box. Make some observations as to whether or not your requirements for this phase
were met. Are you satisfied with the workings of the GUI system so far? Is it legible
and easy to use? Even thougha game like SuperAsteroidArena requires only a few
buttons, are they properly arranged (with necessary spacing, padding, positioning,
and so on)? Are you satisfied with the art assets you are using so far, such as the
background orthe player/asteroid textures?

Graphics Timebox

~~
189

If anything needs to be changed or altered, update the documentation and cre-
ate a new timebox to reflect the decision.

CHAPTER EXERCISES

1. Experiment with some different textures for your game thus far. Add a fa-

vorite background or even alter the asteroid texture to either increase or
decrease the level of realism.

2. Work with the different states defined in your game so far to have different
instructions provided for the player depending on the state.

3. Experiment with different font textures to find one thatfits your design.
4. Experiment with your GUI design. Is it intuitive? In other words, can the

player simply sit down and “live” your game world without the need of a
readme file or instruction manual?

SUMMARY

You have built an even stronger OpenGL foundation from which to work and have
added some very useful objects to your Peon repertoire. Although the gameis still in
its infancy, you were able to add some basic display objects to the SuperAsteroidArena
project. You werealso able to add some basic font support to the engine, allowing you
to load and display text using any character font texture. Although you need much

more added to the game, it is exciting to see some results happening before your eyes!
With the graphics foundation already covered, the next chapter focuses on

working with the input devices that are used by the player to interact with your
game.

10 : Working with Input
Devices

Chapter Goals

® Introduce acquiring basic input using SDL.
® Introduce and explain how to process keyboard, mouse, and joystick

events.

will eventually need to provide a way for the player to interact with the game
world. Whether this is through the keyboard, mouse, or joystick input de-

vices, your game must respond to the player in a timely fashion.

A
s you move forward with the creation and evolution of the game engine, you

INTRODUCTION TO INPUT USING SDL

Since the SDL is a cross-platform game programming library, you do not need to

concern yourself with working with any underlying hardware device layer. The
SDL does the grunt work of creating and initializing your input devices, using some
platform-specific code that you do need to worry about.

192 Game Programming in C++: Start to Finish

What is important, however, is how you access the input devices within your
game. Besides being able to view objects within your game world, the next critical
component of your gameto the player is how well it responds to input. Months of
hard work on the game can evaporate in secondsif the control responseis sluggish
or completely unusable. When the player presses a key or movesthe joystick, the re-
sulting action should feel near-instantaneous.

As with a lot of the components of the SDL, you need to respond to specific
event messages that are sent to the event queue when the player performs an input
action. In other words, every time you press a key on the keyboard, a key event mes-
sage is generated within SDL, and it is sent to your main event queue for processing.

Using the Keyboard

When the input subsystem is initialized by the SDL, you need to worry about pro-
cessing keyboard event messages generated by the player. When the player triggers
an event by pressing or releasing a key, an SDL_Event structure is generated and
dumped into the event queue of the main loop. Listing 10.1 provides you with an
idea of what this structure looks like.

LISTING 10.1 SDL_KeyboardEvent Structure

typedef struct
{

Uint8 type; / /SDL_KEYDOWN or SDL_KEYUP

Uint8 state; / /SDL_PRESSED or SDL_RELEASED

SDL_keysym keysym; //the data containing the scan code and name
} SDL_KeyboardEvent;

To discover which key was pressed or released, you can dig through the event
message, as done in Listing 10.2.

LISTING 10.2 Digging through the Keyboard SDL_Event

SDL_Event event;
while (SDL_PollEvent(&event))

{

// We are only looking for the SDL_KEYDOWN and SDL_KEYUP events
switch(event.type)

{

case SDL_KEYDOWN:

case SDL_KEYUP:

DisplayKeyInfo(&event.key);
break;

Working with Input Devices

~~
193

default:
break;

}

As you can see, the event queue is waiting to receive the SDL_KEYDOWN or
SDL_KEYUP event messages, which are generated when the player presses or releases
a key. With closer examination of the sbL_EVENT reference passed to the Dis-
playKeyInfo function in Listing 10.2, you can easily test which key was pressed or
released. Listing 10.3 has an exampleof this.

LISTING 10.3 DisplayKeyInfo

void DisplayKeyInfo(SDL_KeyboardEvent *key)

{

// Is it a release or a press?
if(key->type == SDL_KEYUP)

OutputDebugString("Release:- ");
else

OutputDebugString("Press:- ");

// Print the hardware scancode
OutputDebugString("Scancode: 0x%02X", key->keysym.scancode);

// Print the name of the key
OutputDebugString(", Name: %s\n",

SDL_GetKeyName(key->keysym.sym));

}

The scancode of the key event message refers to the hexadecimalvalue of the key
pressed, which is what you need to use for determining what action the player in-
tends to perform.

Using the Mouse

Similar to the method you use to process and detect keyboard events, an sDL_Event
structure is also generated for every mouse action. Since you need to respond not
only to mouse movements, but the different mouse buttons as well, processing the
mouse event messageis slightly more complicated than the keyboard.

Listing 10.4 and Listing 10.5 documentthe two SDL_Event structures you need to
handle in the event queue: the SDL_MouseMotionEvent and the SDL_MouseButtonEvent.

194 Game Programming in C++: Start to Finish

LISTING 10.4 SDL_MouseMotionEvent Structure

typedef struct
{

Uint8 type; / /SDL_MOUSEMOTION

Uint8 state; //the current button state of the mouse
Uint16 x, y; //the current x and y coordinates of the mouse
Sint16 xrel, yrel; //the relative motion in x and y direction

} SDL_MouseMotionEvent;

After you have an idea of what kind of data this structure is grabbing from the
mouse, you can query the main event queue for the SDL_MouseButtonEvent message
as well, as shown in Listing 10.5.

LISTING 10.5 SDL_MouseButtonEvent Structure

typedef struct
{

Uint8 type; //SDL_MOUSEBUTTONUP or SDL_MOUSEBUTTONDOWN

Uint8 button; //the button index (left, middle or right button)
Uint8 state; //SDL_PRESSED or SDL_RELEASED

Uint16 x, y; //the coordinates at the time the button was pressed
} SDL_MouseButtonEvent;

The new event queue could appear somewhat similar to Listing 10.2, only you
can now process any events generated by the mouse. An example is shown for you
in Listing 10.6.

LISTING 10.6 Event Queue with SDL_Mouse Support

SDL_Event event;
while(SDL_PollEvent(&event))

{

int x, y;
Uint8 button;

switch(event.type)

{

//The SDL_MOUSEBUTTON message is sent to the queue when SDL

detects
//that you've pressed a mouse button.
case SDL_MOUSEBUTTON:

//do some button action
if(event.button & SDL_BUTTON(1))

{

Working with Input Devices

~~
195

strcat(m_strMouseInfo, " LMB");
}else if (button & SDL_BUTTON(3))
{

strcat(m_strMouseInfo, " RMB");
}

break;

//The SDL_MOUSEMOTION message is sent to the queue when SDL

detects
//mouse movement

case SDL_MOUSEMOTION:

//do some motion action
// Get the mouse's current X,Y position
SDL_GetMouseState (&x, &y);

sprintf (m_strMouseInfo, "Mouse Position (x,y): (%d, %d)", X,

y);

break;

default:
break;

}

}

Using the Joystick

Listing 10.6 demonstrates how to initialize the joystick subsystem contained with
the SDL. This performs any low-level operating system-specific methods to set up
a way to reference one or more joysticks attached to the computer.

LISTING 10.6 Joystick Subsystem Initialization

if(SDL_Init(SDL_INIT_JOYSTICK) < 0)
{

//return error code
}

Joystick Enumeration

Before you can use the joystick within your application, it is necessary to allow the
joystick subsystem to enumerate (or discover) the available joysticks connected to
the computer.

196 Game Programming in C++: Start to Finish

A useful function available to you is the SDL_NumJoysticks method that queries
the machine for the number of connected joysticks. This is a quick filter you can use
before you bother with any more joystick initialization functions, as shown in List-
ing 10.7.

LISTING 10.7 Using SDL_NumJoysticks

bool joystick_found = true;
int joystick_count = 0;

joystick_count = SDL_NumJoysticks();
if(joystick_count <= 0)

{

joystick_found = false;
return false;

}

Opening a Joystick

Before you can capture any data from the joystick, you first need to properly ini-
tialize it within SDL. A joystick is encapsulated by the SDL_Joystick object and acts
as a container ofsorts for the polled joystick data. You use the SbL_JoystickOpen
method as demonstrated in Listing 10.8.

LISTING 10.8 Obtaining a Valid SDL_Joystick

SDL_Joystick* pJoy = NULL;

if(joystick_found)
{

pJoy = SDL_JoystickOpen(0);
if (pJdoy != NULL)
{

printf ("Name: %s\n", SDL_JoystickName(0));
printf ("Number of Axes: %d\n", SDL_JoystickNumAxes(joy));
printf ("Number of Buttons: %d\n", SDL_JoystickNumButtons(joy));

}

Processing Joystick Events

Working with joystick data is somewhat different from working with input data
received from the keyboard or mouse. Under the SDL, there are two choices for

Working with Input Devices

~~
197

obtaining joystick data: the event queue or polling the joystick directly. To remain
within the event queue paradigm, you will learn how to process joystick events
through the main queue.

)

To signal to SDL that you want to use the event queue to handle the joystick
event messages, you need to use the SDL_JoystickEventState method with a para-
meter of SDL_ENABLE. If you were to launch the program now asis, your main event
queue would get flooded with quite a bit of garbage joystick data. You need to set a
minimum threshold that the joystick will respond to. This is known as the joystick
device’s deadzone. See Listing 10.9 for further clarification.

LISTING 10.9 Responding to Joystick Events in the Main Event Queue

//enable the event queue to listen for joystick states generated
//by SDL.

SDL_JoystickEventState (SDL_ENABLE) ;

SDL_Event event;
while(SDL_PollEvent(&event))

{

switch(event.type){

case SDL_JOYSTICKAXISMOTION:

//define some dead-zone for the joystick
if ((event.jaxis.value < -3200) || (event.jaxis.value > 3200))
{

if(event.jaxis.axis == 0)
{

// Left-right movement code goes here
}

if(event.jaxis.axis == 1)
{

// Up-Down movement code goes here
}

}

break;
//Handle Joystick Button Presses
case SDL_JOYBUTTONDOWN:

if (event.jbutton.button == 0)
{

// code goes here. Zap that alien or activate shields.

198 Game Programming in C++: Start to Finish

break;

default:
break;

}

Cleaning up the Joystick
After you have finished with the game and are in the process of freeing up any
allocated resources, do not forget to free the memory used by the sbL_Joystick
object. This can be done with a call to the sbL_JoystickClose method as shown in
Listing 10.10.

LISTING 10.10 Using SDL_JoystickClose

//Cleanup memory for the first joystick only. If more are in
//the system, then loop through them to clean them all up.

if (SDL_JoystickOpened(0))
SDL_JoystickClose(pJoy);

ADDING INPUT SUPPORT TO PEON

Now that you are familiar with working with sbL_Event messages sent with any
input device event, you can add this capability into the Peon engine. For a simpler
approach to processing input, you will modify the 1ApplicationState object that
you have been using in order to add input notification functions. This provides the
most flexibility for users of the engine. Listing 10.11 details the modifications of the
IApplicationState object.

LISTING 10.11 /PeonMain/include/IApplicationState.h

namespace peon
{

class PEONMAIN_API IApplicationState
{

//snip

Working with Input Devices 199

//provide a mechanism to handle key down and key up messages
//note that these methods are not defined as pure-virtual. This
//is to allow the implementation of this state object to only use
//what they need...they may not even need input at all, etc.
virtual void onKeyEvent(SDL_KeyboardEvent *pEvent){};

//the following methods will handle mouse events
virtual void onMouseButton(SDL_MouseEvent* pEvent){};
virtual void onMouseMotion(SDL_MouseEvent* pEvent){};
//snip
bs

Then from within the main event loop ofthe EngineCore object, it is just a mat-
ter of passing the right input event message to the current IApplicationState ob-
ject. These modifications are here for you in Listing 10.12.

LISTING 10.12 Modifications to EngineCore: :runEngine ()

int EngineCore::runkEngine()
{

//snip
while (! done)
{

while (SDL_PollEvent(&event))

{

switch (event.type)

{

case SDL_KEYDOWN:

case SDL_KEYUP:

if (m_pApplication)
m_pApplication->getCurrentState()->onKeyEvent (event);

break;
//snip!

}

}

}

//snip!

200 Game Programming in C++: Start to Finish

You will learn more about implementing these input event messages during the
next timebox of the SuperAsteroidArena project, covered in Chapter 12, “Input and
Sound Timebox.”

CHAPTER EXERCISES

1. Some games allow the player to provide a customized input file for remap-
ping the keyboard. Incorporate the IniconfigReader object into your input
system to allow it to pull desired key mappings from an .INI configuration
file.

2. Centralize the input events into a common structure that you will update
with each input event message. For example, if the player should press the
left arrow on the keyboard, move the mouse left, or move the joystick left,
then your input structure should just signal that a left motion was detected.
This allows the player to use the device ofhis preference.

3. Instead of responding to events in the SDL message queue, compare your
application performance and/or feedback with polling the input devices di-
rectly every update cycle of your game. Are there situations in which one
method is preferred over the other?

SUMMARY

Using the features of the SDL, you were shown how to create and access the stan-
dard input devices found on most PCs today: the keyboard, mouse, and joystick.
You were also given more experience in using the SDL event queue to process event
messages generated from these input devices. Input handling within a game is an
important facet to incorporating the player into your game world. If your input re-
sponse is slow or sluggish, especially in an action game, then it can almost ruin the
game experience for any player.

Oneofthe other core components of a video game is the audio feedback gen-
erated for the player depending upon the action in the game. In the next chapter,
you will learn how to use and manipulate your sound hardware to add more meat
to your game.

Working With Sound

Chapter Goals

Discuss sound properties.
Introduce the layers of sound involved in a game.
Introduce the SDL_Mixer library.
Introduce 3D positional sound using OpenAL.
Introduce how to play both WAV and Ogg-Vorbis files.

ronment for a game is one of the most critical aspects involved in present-
ing the overall package to the player. The right balance of audio cues within

your game can create an incredible experience that can really draw the player into
the game world.

A
lthough mostly overlooked until the later stages of a project, the audio envi-

SOUND MECHANICS

Soundis a wave emitted from a source that travels through some kind of medium,
which is usually air or water. You can hear sound in your everyday environments
here on Earth, as the medium the sound waves travel through involves air mole-

cules. However, contrary to most science fiction movies, explosions or laser fire

201

202 Game Programming in C++: Start to Finish

cannot be heard in space as there are no air molecules for the sound wavesto travel
through, hence no sound effect.

For sound programming purposes, there are two characteristics to describe
sound waves:

Amplitude: If you were to look at your sound wave figure, the amplitude is
the measure of the height of the sound wave from the base to the crest.
Frequency: This attribute defines the number of cycles per second that the
sound wave pulses. Thisis also known as the pitch of a sound and is measured
in Hz (hertz).

DIGITIZED SOUND

When you record orstore an audio effectinto a digitized form, you are telling the
computer to record the amplitude of the sound. How often the amplitude is
recorded is known as the sampling rate.

For example, CD-quality audio has a sampling frequency rate of 44,000 Hz,
which means that the computer makes 44,000 measurements per second of the
sound source. Taking fewer measurements per second will shrink the size of the re-
sulting data file but will diminish the quality of the sample since the computer is
taking less measurements of the sound effect.

SOUND LAYERS

Within a high-performance game situation you can have multiple layers of sound
that help draw the player into the game world. For most games you work with ap-
proximately four layers: background, environment, effects, and speech. The back-
ground layeris simply the music that conveys an overall atmosphere of the game to
the player. For instance, in a haunted house environment the background layer
might simply contain some ghostly, haunting music to help chill the player.

The environment layer mostly describes audio effects that contribute to the lo-
cale of the game. In the same haunted house, for example, environment effects can
be things like creaking floors, mysterious doors opening and closing, chains drag-
ging on the floor, and perhaps an occasional ghostly wail.

Effects is another sound layer that most games use; these sounds are from the
character or surrounding environment itself, This is mostly sound effects heard

Working With Sound

~~
203

from player actions, such as using an item from the player’s inventory, direct ma-

nipulation of objects within the game world, and so on. For example, as the player

moves through the haunted house, he is breathing quickly with each freaky sound.

Every footstep produces creaks and groans in the floorboards ofthe old house.

With each old door, we hear squeaks and squeals of the door handle turning and

then opening on its rusty hinges.
A final sound layer that most developers use in their games is speech. Most

often speech is delivered during plot advancing moments of the game such as a cut

scene of some kind, oris used to flesh out the characters around the player. To con-

tinue the haunted mansion example, the speech layer could be the voiceover of
the player himself who is reading a will from his long lost uncle, which has a decree

that the player muststay in his house for one night to inherit the extensive family

fortune.
There are probably many more sound layers you could define on your own, but

for the most part these are the most common.

INTRODUCTION TO SDL_MIXER

As you discovered in Chapter 10, “Working with Input Devices,” on using the SDL

for input device management, the benefit of using the library is felt immediately

since you do not need to concern yourself with any low-level input device manip-
ulation. For audio purposes, there exists a helpful SDL component called

sDL_Mixer, which encapsulates any low-level system specific audio device tasks.

With spL_Mixer you can play two broad types of audio datafiles: music data and

digitized sound effects data.

WORKING WITH AUDIO MUSIC DATA

Although the spL_uixer library supports a wide variety of music data that you can

load into your programs, here you focus only on probably the two most popular
formats for game music: MIDI and Ogg-Vorbis.

Musical Instrument Device Interface (MIDI) is a format/language that de-

scribes musical compositions as a function of time. Instead of working with digital

samples, a MIDI composition is described as a collection of instruments, keys, and

some special codes. Each channel ‘in the MIDI specification is also responsible for

a different instrument. For example, you might have 16 channels available, each

204 Game Programming in C++: Start to Finish

one representing a different instrument, such as a piano, drums,guitar, flute, trum-
pet, saxophone, and so on. The actual playback of a MIDI composition is left to the
hardware, which means that depending upon the kind of audio hardware installed,
the tune might sound different on one machine than the other. Although the MIDI
format can contain only synthesized music, the actualfile size for this formatis very
small, which is whyit was so popular for a time.

Ogg Vorbis is an audio compression scheme comparable to other formats such
as MPEG-3, with the exception that Ogg Vorbis is completely open source, un-
patented, and license-free. For a lot of commercial and independent game projects,
itis replacing the MPEG-3 format, which requires rather expensive royalty fees. For
proof ofthis, you can find a lot of the recent AAA titles have some of their audio
data stored in Ogg-Vorbis format, such as Unreal Tournament 2004, Jedi Knight II,
and a host of others. For working with music data, Listing 11.1 demonstrates how
to initialize the SDL_Mixer library taken from the /chapter_11/BasicMidi sample
project.

LISTING 11.1 Initializing SDL_Mixer Subsystem

int audio_rate = 22050; //a 22050 Hz frequency rate
Uint16 audio_format=AUDIO_S16; // 16-bit stereo
int audio_channels 2; //specify 2 audio channels
int audio_buffers 4096; //desired buffer size for output

//Initialize the SDL subsystem
SDL_Init(SDL_INIT_EVERYTHING);

//This is where we create a handle to the audio device.
/IMix_OpenAudio takes as its parameters the desired audio format
if (Mix_OpenAudio(audio_rate, //frequency

audio_format, //audio format
audio_channels, //2 for stereo, 1 for mono
audio_buffers)) //bytes used per output sample

{

OutputDebugString ("Unable to open audio!\n");
return false;

}

//query the audio layer to see what we really ended up with.
//We can throw these values into a log file to help debugging.
Mix_QuerySpec(&audio_rate, &audio_format, &audio channels);

From Listing 11.1, you can immediately see what kind of information you will
need in orderto initialize the sbL_Mixer audio subsystem.

Working With Sound

~~
205

First, you need to decide on an audio format you want to provide for your
game. As you can see, you are using an audio rate of 22,050 kHz, 16-bit stereo with

two channels.
In the sample, you are using the Mix_OpenAudio function to initialize and create

your main audio format.
Proceeding with Listing 11.2, you learn how to load some music data and then

playit.
LISTING 11.2 Using Mix_Music

Mix_Music *pMusic = NULL;

/|/ Actually loads up the music
pMusic = Mix_LoadMUS("data\\media\\archive.mid");

//snip
//further on in our event queue we can enable or disable the sound

//when you hit the 'm' key

while (!done)
{

while (SDL_PollEvent(&event))
{

switch(event.type)
{

case SDL_QUIT:
done = 1;

break;

case SDL_KEYDOWN:

case SDL_KEYUP:

switch (event.key.keysym.sym)
{

case SDLK_m:

//if the 'm' key is detected being pushed down

if (key.state == SDL_PRESSED)

{

Mix_PlayMusic(pMusic, //our Mix_Music structure
0) //0 to play once, -1 for infinite loop

}

break;
}

}

206 Game Programming in C++: Start to Finish

You need to use the mix_Music data structure to store the audio data loaded
during the Mix_LoadMus function. For the purposes of demonstration, the musicdata is only started by the ‘m’ key and simply plays a single time. Should you wantto use this audio data for your background music in a game you will probably wantit to infinitely loop.

Cleaning Up

After you are finished with your music data, to avoid any memory leaks, you need
to properly clean everything up. Listing 11.3 details the necessary steps to clean upthe Mix_Music structure and the underlying sbL_Mixer interfaces.

LISTING 11.3 Cleaning up Mix_Music

Mix_HaltMusic();

// Unload the music from memory
Mix_FreeMusic (pMusic);
pMusic = NULL;

//close and destroy the SDL_Mixer interfaces
Mix_CloseAudio();

You have now learned how to load, play, and clean up audio music data and
can confidently use it in any SDL application.

Working with Audio Sound Effects Data
The other kind of audio data most often used during gameplayis sound effects
data.

After the audio hardware is created and initialized, you then needto create and
“c. , load the sound effects data as shown in Listing 11.5, which is taken from the / chap-

ovmeco ter_11/BasicWAYV project.

LISTING 11.5 Loading Sound Effects

//Mix_Chunk is used like Mix_Music only for short sound effects
Mix_Chunk *pExplosion = NULL;
//Every sound that gets played is assigned to a channel. This

assignment
//is the specific information about a sample that is playing. It is//not the same as the number of channels specified during audiodevice

Working With Sound

~~
207

//creation. (ie. 2 for stereo, 1 for mono, etc)
int sound_channel = -1;
pExplosion = Mix_LoadWAV ("explosion.wav");
if (!pExplosion)
{

//the sound data failed to load properly
return false;

Sound Effect Playback

Now that you have loaded your sound effects, you need to learn how to use

soL_mixer to play them back. Youwill take advantage of the Mix_PlayChannel func-

tion to send the sound effect data to the audio hardware. An SDL_Mixer channel is

used to store information about a sound sample thatis playing and should not be

confused with the number of channels you requested when you originally created

the audio subsystem with the Mix_OpenAudio function. Listing 11.6 demonstrates
how you can do this.

LISTING 11.6 Using Mix_PlayChannel

while (!done)
{

while (SDL_PollEvent (&event))
{

switch (event.type)
{

case SDL_QUIT:
done = 1;

break;

case SDL_KEYDOWN:

case SDL_KEYUP:

switch(event.key.keysym.sym)
i
case SDLK_s:

if (key.state == SDL_PRESSED)

{

sound_channel = Mix_PlayChannel(
-1, //the channel we should play on. -1 for don't care
pExplosion, //the Mix_Chunk data

-1); //the number of times sound should be looped.

208 Game Programming in C++: Start to Finish

break;

Cleaning Up

As with the music audio data, you need to free up any memory resources allocated
for the Mix_Chunk sound effect data structure. This is done with the help of the
Mix_HaltChannel method, which takes the sample channel as the only argument,
shown in Listing 11.7.

LISTING 11.7 Mix_Chunk Cleanup

Mix_HaltChannel(sound_channel);
Mix_FreeChunk(pExplosion);
sound_channel = -1;

INTRODUCTION TO OPENAL

You have learned much about creating and playing some background music and
sound effects for your game. However, at the beginning of this chapterit was men-
tioned that a possible sound layer within a game is that of environmental sound.
Normally, most games will play a looping music track in the background, which
provides some ambient environment or atmosphere. Other times, you might want
to play sound effects from different locations in your game world. To accomplish
this, you need to be introduced to a high-quality audio API called Open Audio
Library (OpenAL), which makesit simple to position and play a sound within 3D
space. This gives you the chance to play a sound more loudly as the player approaches
it, and to makeit quieteras the player moves farther away. OpenAL was created and
designed to be a cross-platform, high-performance audio library and purposefully
meant to seamlessly integrate with OpenGL with the design ofits function format
and usage.

There are four important components to work with in OpenAL:

® The Audio Library Context is a high-level object that represents the sound de-
vice capable of functioning across multiple platforms such as Windows, Linux,
or MacOS.

® The source object represents some properties around the position in space from
which the sound emits.

Working With Sound

~~
209

m The listener object represents the audio properties ofthe position in space from

which you want to hear the sound. In most cases, this is the player’s position in

your game world.
® The audio buffer represents some properties on how to play the sound, along

with the actual sound dataitself.

Intializing the OpenAL Device Context

Before you can begin to play any sounds, you must first initialize your OpenAL

context. This simply creates a link between your application and the local audio

~~, hardware installed on your machine. Listing 11.8 demonstrates how this is done

Wo and is taken from the /chapter_11/BasicSoundOpenAL project on the CD-ROM.

LISTING 11.8 OpenAL initialization

ALCcontext *pContext;
ALCdevice *pDevice;

//open a link to the audio hardware using the DirectSound3D

/ [underlay
pDevice = alcOpenDevice((ALubyte*)"DirectSound3D");
if (pDevice == NULL)

{

return false;
}

//Create a valid context
pContext=alcCreateContext(pDevice,NULL);

//make it the current active context
alcMakeContextCurrent (pContext);

Loading Sound Effects

The next step in using the OpenAL deviceis to load up any sound effect or musical

data you wantto use in your scene. You need to create an OpenAL buffer, which is

responsible for containing your audio data that you then attach to either a source

or listener object within the game world. The only data formata buffer object will

supportis Pulse Code Modulation (PCM) data stored in the WAV format, which is

a native audio format on Windows. Listing 11.9 demonstrates how to load some

audio data into an OpenAL buffer.

210 Game Programming in C++: Start to Finish

LISTING 11.9 Loading WAV Data into a Buffer

char* alWAVBuffer; //data for the buffer
ALenum alFormatBuffer; //for the buffer format
ALsizei alFreqBuffer; //for the frequency of the buffer
long alBufferLen; //the bit depth
ALboolean alloop; //looped

unsigned int alBuffer;

//load the wave file
alutLoadWAVFile(strWaveFile.c_str(),//WAV filename

&alFormatBuffer, //0penAL format specifier
(void **) &alWAVBuffer, //size of the WAV file in bytes
(unsigned int *)&alBufferLen, //bit depth of WAV..16 or 32
&alFreqBuffer, //frequency of the WAV file
&loop); //1looping indicator for data

/lcreate a buffer..similar to glGenTexture
alGenBuffers(1, &alBuffer);

//fill the buffer with the audio data loaded
alBufferData(alBuffer, //buffer handle

alFormatBuffer, //format type of the data
alWAVBuffer, //handle to audio data
alBufferLen, //size of audio data in bytes
alFreqBuffer); / frequency of audio data

positionBuffer(alBuffer);

//release the data
alutUnloadWAV (alFormatBuffer, alwWAvBuffer, alBufferLen,

alFreqBuffer);

Similarly to the process of texture image loading under OpenGL, after youhave finished working with the raw data and have loadedit into your context, you
mustfree the associated data loaded into memory.

Working with the Source Object
Oneof the fundamental aspects of working with OpenAL in your game world is the
use of positional sound. When you have a valid buffer loaded with data, you will

Working With Sound

~~
211

need to attach it to a source object within your scene. The advantage of using

OpenAL is that you can have the sound move in conjunction with the associative

object itself, giving you a very realistic scene. Perhaps you have a monster moving

through your level or maybe some water dripping from the walls of your dungeon.

Positioning these sounds can really create some fantastic environments that your
player will remember.

Since OpenAL is designed for smooth integration with OpenGL, when you work

with the location coordinates of your source or listener objects, you are using a

right-handed coordinate system.

Listing 11.10 demonstrates how to set up and configure an OpenAL source

object.

LISTING 11.10 Positioning the Source

unsigned int alSource; //source object handle

// Bind buffer with a source.
alGenSources(1, &alSource);

//if there's an error caught by the system, then exit
if(alGetError() != AL_NO_ERROR)

return AL_FALSE;

//some default coordinate positions. Initialize to the origin
//of the world for now

float vecPos[] { 0.0f, 0.0f, 0.0f };
float vecVell] { 0.0f, 0.0f, 0.0f);1

//attach the source object with the WAV data in the buffer
alSourcei (alSource, AL_BUFFER, alBuffer);

//control the pitch of the data
alSourcef (alSource, AL_PITCH, 1.0 iT

//Gain helps you define a scalar amplitude multiplier
alSourcef (alSource, AL_GAIN, 1.0f Yi

/ specify the source position
alSourcefv(alSource, AL_POSITION, vecPos);

212 Game Programming in C++: Start to Finish

//specify the source velocity
alSourcefv(alSource, AL_VELOCITY, vecVel);

//1loop the data once you hit the end? Default is false
alSourcei(alSource, AL_LOOPING, AL_FALSE)i

As you can see, there are tweak several properties that you can tweak to prop-erly position your sound source. With the AL_BUFFER flag you are specifying which
OpenAL buffer you wantto attach to this source. There are two positional flags,
AL_VELOCITY and AL_POSITION, that you should understand the difference between.The AL_POSITION specifies the position of the sound in world coordinates. The
AL_VELOCTIY parameter, on the other hand, specifies the current speed and velocityof the sound source. The velocity does not affect your source position, and OpenALwill not update a new velocity position based upon an updated position. The Ope-nAL driver will use the velocity information when calculating the Doppler effect onyour audio source.

Positioning the Listener Object
Similarly to the source object, the listener object encapsulates and represents anobject capable of hearing the sound in the game world. With OpenAL you onlyhave one listener, which takes advantage of most of the same properties as the
source object.

Listing 11.11 provides an example of configuring your listener.
LISTING 11.11 Positioning Your Listener

float listenerx, listenery, listenerz;
float vecOrient[6];

//pick an arbitrary listener location. Normally this might
/Irepresent the location of your player in the game world as//he or she runs through the forests or the Deadmines.
listenerx=10.0f;
listenery=0.0f;
listenerz=5.0f;

vecOrient[0] = fvecx; //forward vector Xx value
vecOrient[1] = fvecy; //forward vector y value
vecOrient[2] = fvecz; //forward vector z value
vecOrient[3] = uvecx; //up vector x value
vecOrient[4] = uvecy; //up vector y value
vecOrient[5] = uvecz; //up vector z value

Working With Sound

~~
213

//set current listener position
allListener3f (AL_POSITION, listenerx, listenery, listenerz);

//set current listener orientation, which represents the forward and

//up vectors of your view matrix
alListenerfv(AL_ORIENTATION, vecOrient);

As you can see, the AL_ORIENTATION can represent the up and forward vec-

tors taken from your scene’s view matrix.

Playing the Sound

The buffer has been loaded, the source and listener objects have been positioned,
and so the OpenAL contextis ready to play the sound. Using the AL_LOOPING para-

meter of your source object you can also specify the context if you want the sound

to loop after it has finished playing. Listing 11.12 shows how to play the sound.

//tell the sound to loop continuously
//AL_TRUE for yes, AL_FALSE for no
alSourcei(alSource,AL_LOOPING,AL_TRUE);

//play the sound
alSourcePlay(alSource);

Stopping the Sound

Listing 11.13 demonstrates how to stop a sound source that is currently playing.

LISTING 11.13 Stop the Sound

//To stop the sound:
alSourceStop(alSource);

Shutting Down the OpenAL Context

All things must come to an end, and OpenAL is no exception. During the unload-

ing of your game you will need to clean up any audio buffers, source objects, and

your OpenAL context and device link. Listing 11.14 provides an example for per-

forming this garbage collection of your OpenAL environment.

214 Game Programming in C++: Start to Finish

LISTING 11.14 OpenAL Cleanup

//delete our source
alDeleteSources(1,&alSource);

//delete our buffer
alDeleteBuffers(1,&alBuffer);

//Get active context
pContext=alcGetCurrentContext();

//Get device for active context
pDevice=alcGetContextsDevice (pContext);

//Disable context
alcMakeContextCurrent (NULL);

//Release context (s)
alcDestroyContext (pContext);

//Close device
alcCloseDevice(pDevice);

alutExit();

PLAYING OGG-VORBIS DATA WITH OPENAL

C=» Although the default wav format supported by OpenAL providesa lot of flexibilityMED in terms of working with simple sound effects to fully fledged musical scores, there
may be cases in which the overall size of your game is under a very tight control.
Although you learned how to load and use Ogg-Vorbis files with spL_mixer, there
might eventually be a need to use OpenAL to play your Ogg-Vorbis data. Listing
11.15 demonstrates how to load your data into an OpenAL buffer and is taken
from the /chapter 11 /BasicOggOpenAL sample.

LISTING 11.15 Loading Ogg-Vorbis Data into a Buffer

#include <ogg/ogg.h>
#include <vorbis/codec.h>
#include <vorbis/vorbisenc.h>

Working With Sound

~~
215

#include <vorbis/vorbisfile.h>
#define BUFFER _SIZE 32768 //32 KB buffer
[snip
FILE*® oggFile; // file handle
OggVorbis_File oggStream; // stream handle
vorbis_info* vorbisInfo; // some formatting data
vorbis_comment* vorbisComment; // user comments

int result;
char vorbis_data[BUFFER_SIZE];

//physically open the file
if (!(oggFile = fopen(path.c_str(), "rb")))

return false;
//Open the OggVorbis_File using the existing FILE pointer
if ((result = ov_open(oggFile, &oggStream, NULL, 0)) < 0)

{

fclose(oggFile);
return false;

vorbisInfo = ov_info(&oggStream, -1);
vorbisComment = ov_comment(&oggStream, -1);

//if you only want one channel, then make sure we're working in MONO

// format
if (vorbisInfo->channels == 1)

format = AL_FORMAT_MONO16;

else
format = AL_FORMAT_STEREO16;

// The frequency of the sampling rate
freq = vorbisInfo->rate;

long bytes = 0;
int endian = 0; // 0 for Little-Endian, 1 for Big-Endian
if (SDL_BYTEORDER == SDL_BIG_ENDIAN)

{

endian = 1;
}

do

216 Game Programming in C++: Start to Finish

// Read up to a buffer's worth of decoded sound data
bytes = ov_read(&oggFile, vorbis_data, BUFFER_SIZE, endian,

25 1; &oggStream);
/1 Append to end of buffer
buffer.insert(buffer.endy(), array, array + bytes);

} while (bytes > 0);

ov_clear(&oggFile);

There is a little more work involved to load Ogg-Vorbis data, but thankfully the
0gg-Vorbis objects and methods take care of mostof the work for you. After open-ing the audio data file, the application determines the underlying Endian format touse. OpenAL will then proceed to load the audio data into the Ogg buffer.

Playing the Ogg Buffer

Now that the sound is loaded into an OpenAL buffer, you can manipulate and playit back in the same way that you are accustomed to with the WAV file. Listing11.16 demonstrates how to do this.

LISTING 11.16 Playing the Ogg Buffer

//tell the sound to loop continuously
//AL_TRUE for yes, AL FALSE for no
alSourcei(alSource,AL_LOOPING,AL TRUE);

//play the sound
alSourcePlay(alSource);

The cleanup and garbage collection of the buffer is identical to how you re-moved the OpenAL buffer in Listing 11.14.

CHAPTER EXERCISES

1. Check the OpenAL documentation to learn more parametersthat you canuse for your source and listener objects.
:2. Manipulate your listener to move around the world in response to the key-board. Provided you set the parameters properly, you should be able tomove around the sound and hear it change depending upon where you arein relation to it and your distance from the sound.

Working With Sound

~~
217

3. You have the option of playing sound effect WAV data in either OpenAL

or SDL_Mixer. Take some time to experiment with each one to determine
whether thereis a situation in which one API is better than the other.

SUMMARY

This chapter accomplished the task of introducing you to the sbL_Mixer library that
enables you to play and enjoy audio resources within your game, without worrying

about any low-level code to manipulate the audio hardware. You learned how to
load and play both MIDI and Ogg-Vorbis audio data, as well as learning how to
load and play sound effect files stored in the WAV format. You also learned about

using the OpenAL API, which allows you to position and play sound effects in 3D

space. With the stengths of both libraries at your fingertips, playing background
music while adding explosion and laser sound effects is no problem and will only

add more depth and fun to any game you create! In the next chapter, you focus on
adding both input and sound to the SuperAsteroidArena game.

|2 Input and Sound Timebox

Chapter Goals

m Incorporate the input objects into your game engine.
® Incorporate the audio objects into your game engine.
® Add input and sound support to SuperAsteroidArena.

message was received, you can combine the SDL_Mixer and OpenAL li-N= that you have had an introduction to using SDL to detect which input

braries to handle your audio feedback.

TIMEBOX REQUIREMENTS

Onceagain,it is time to checkout your design documentfor the SuperAsteroidArena

project to work with a list of requirements for this timebox. The goal ofthis timebox

is to update the player to respond to keyboard input. This entails moving the player
in the game world, along with playing any additional audio feedback to accompany
the player’s actions. You can create a list of requirements similarto the following:

219

220 Game Programming in C++: Start to Finish

Add theability to process input into the game.
Add the ability to load and play audio resources in the game.
Add audio resources to most of the game states that exist already.
When the player moves the input device, the player’s ship should respond
accordingly.

As you can see, these requirements will add a whole new depth and feel to the
gameso far. Hopefully,it is becoming easier to see why the Agile method is used
often, as it provides you with quick results and continuous feedback to maintain
your excitement level in the project.

Ifyou are not actually seeing anything for the firstfew days or weeks ofa game pro-
ject, then the game itself unfortunately has a higher chance of not being completed.
Although it can be healthy to sometimes take a few daysofffrom the projectto pro-vide you with a mental break, do not take too long.

REQUIRED INPUT EVENTS

Before implementing any code for processing input events received from the event
queue, you should work with a preliminary list of actions that the player will
want/need to perform during the execution of the game.

In the case of the SuperAsteroidArena game, you can create a list of actions af-
fected bythe player’s input:

Rotate the ship (left or right).
Enable/disable the ship’s main engines (that is, thrust).
Enable/disable the sound effects.
Enable/disable the background music.

To make this happen in the game project, you need to override the events gen-erated by the 1Applicationstate interface. By responding to the different input
controls, you can best manipulate the player’s ship around the game world.

Listing 12.1 provides some more details on adding supportfor these keys in the
game.

Input and Sound Timebox

~~
221

LISTING 12.1 Adding Key Event Support

//Within the ActiveState.h definition
class ActiveState : public IApplicationState
{

//snip
//override the onKeyEvent message to help process incoming

//input commands

void onKeyEvent(SDL_KeyboardEvent* pEvent);
bs

Now that you have provided definitions for the input methods that you are able

to override, you can implement them within the Activestate.cpp module. The
basic algorithm used is to detect which key was pressed and then invoke the ap-
propriate response in your code.

Rotating the Player's Ship

One of the input actions you have in the design document is to rotate the player’s
ship left or right, depending upon which direction key/inputis received. To prop-
erly rotate the player’s ship, you will need to manipulate the object’s rotation
around the z-axis. Listing 12.2 describes how to add some code to help rotate the

player’s orientation.

LISTING 12.2 Player Rotation

void ActiveState: :onKeyEvent(SDL_KeyboardEvent* pEvent)
{

switch (pEvent->keysym.sym)

{

case SDL_LEFT:
//rotate the ship to the left
m_oOurPlayer.vecRot.z += (m_oOurPlayer.fTurningRate *

-1.0f * fTimeKey);
break;
case SDL_RIGHT:

//rotate the ship to the right
m_oOurPlayer.vecRot.z += (m_oOurPlayer.fTurningRate *

1.0f * fTimeKey);

222 Game Programming in C++: Start to Finish

break;
bs

After you compile and run the game, you should now have theability to rotatethe ship left and right using the arrow keys on your keyboard.

Activating the Players Engines

According to the design document, the player must also be able to activate somethrust engines in order to move forward. Listing 12.3 details how to add some for-
ward motion to your player’s ship in the game world.

LISTING 12.3 Adding Forward Movement

void ActiveState: :onKeyDown (SDL_KeyboardEvent* pEvent)
{

switch(pEvent->keysym.sym)
{

case SDK_LEFT:

//snip
break;
case SDK_RIGHT:

//snip
break;
case SDK_UP:

/lapply forward movement to the player
float velocity = 0.05f * fTimeKey;
//first grab our rotation, and convert it from
//degrees into radians
float fX = PEON_DEGTORAD (m_oOurPlayer.vecRot.z);

//now update the player's position based upon the
//sin and cos values of the rotation (in radians)
m_oOurPlayer.vecVel.x += velocity * cosf(fX);
m_oOurPlayer.vecVel.y += velocity * sinf(fX);

break;
bs
}

Input and Sound Timebox

~~
223

USING THE AUDIOENGINE

Another important component of the Peon library created during the EngineCore
initialization process is the AudioEngine subsystem. This object attempts to encap-
sulate both the SDL_Mixer and OpenAL toolkits you learned about in the preced-
ing chapter. Listing 12.4 provides a detailed look at the AudioEngine component.

LISTING 12.4 AudioEngine

namespace peon
{

xe
* This structure is responsible for encapsulating a 3D sound
* within our game world. It should be fairly generic enough
* to handle most situations
*/
struct PEONMAIN_API AudioNode
{

/** the source buffer */
ALuint sound_source;
/** the actual sound buffer */
int sound_buffer;
/** loop the sound? */
bool sound_loop;
/** sound's position in 3D space */
ALfloat sound_position[3];
/** sound's velocity within the game world */
ALfloat sound_velocity[3];
};

ew
* This object is our interface to the audio device detected
* on the machine. This should give us an easy mechanism to
* load and playback audio data.
*J
class PEONMAIN_API AudioEngine : public ISingleton<AudioEngine>
{

public:
/** Constructor */
AudioEngine();
/** Destructor */

224 Game Programming in C++: Start to Finish

~AudioEngine();
/** snip. Standard ISingleton overrides. snip. */
[**
* This method makes the necessary calls to load up a
* Mix_Music instance which is used for playback of
* MIDI files
* @param strFilename - path to the MIDI file
* @return Mix_Music* - pointer to our Mix_Music object
*
Mix_Music* loadMIDI(const String& strFilename)s

]**
* This method makes the necessary calls to load up a
* Mix_Chunk instance which is used for playback of
* MIDI files
* @param strFilename - path to the WAV file
* @return Mix_Music* - pointer to our Mix_Chunk object
2]
Mix_Chunk* loadWAVChunk(corist String& strFilename);

J **

* This method internally loads the audio resource
* into some OpenAL compatible buffers. When you wish
* to work with a resource, you need to reference it by
* the slot you stored it in.
* @param strFilename - path to WAV file
* @param slot - slot to store resource
* @return bool - true if sound loaded properly
*if

bool loadAudioNode(const String& strWAVFile, AudioNode* pNode);

bs
}

Loading Sounds

To demonstrate how easy and flexible the AudioEngine component is, you can now
load and play some sound and music files within your project. Listing 12.5 details
the sound data you are going to load for some sound effects within SuperAs-
teroidArena.

Input and Sound Timebox

~~
225

LISTING 12.5 Loading Sounds

bool MainApp::onLoadWorld()
{

//snip the other code
//defined as peon::AudioNode m_oAudioNodes[MAX_AUDIO_SAMPLES]

peon::AudioEngine: :getSingleton().loadAudioNode (

"data\\media\\laser.wav",
&m_oAudioNodes[0]);

//load the rest of the audio data the same way
return true;
}

Playing Sounds

Now that the audio data is available to use in memory, you can play it at your
leisure within any state of the game. Listing 12.6 details how this is done.

LISTING 12.6 Playing Audio

//if the laser sound is loaded into AudioNode slot 0, you need

//to "set" the sound within the AudioEngine
peon: :AudioEngine: :getSingleton().setAudioNode(&m_oAudioNodes[0]);

//Now it is okay to play the audio node!
peon: :AudioEngine::getSingleton().playAudioNode(&m_oAudioNodes[0]);

Unloading Sounds

As with the other objects created during the runtime of the game, you will need to
ensure that the AudioNode objects are cleaned up. Listing 12.7 details how to prop-
erly unload the AudioNode objects created during this application.

LISTING 12.7 Unloading Sounds

void MainApp::onUnloadWorld()
{ Eo
//clean up the audio node objects
for(int i = 0; i < AUDIO_MAX_SOUNDS; i++)
{

226 Game Programming in C++: Start to Finish

//just use the AudioEngine object of the peon library to unload any
//audio data
peon: :AudioEngine::getSingleton().unloadAudioNode(&m_oAudioNodes[i]

);
}

}

TIMEBOX EVALUATION

Now that you have added some input and audio mechanisms to your game in this
timebox, evaluate what you have accomplished so farin this phase. Does your pro-
ject meet or exceed your input and audio requirements? Are you dissatisfied with
any of your audio music or effects? After some play testing, do you needto alter the
input configuration, or are your key mappings sensible for the player?

If you decide to alter any of the game design, remember to keep your design
document updated and create a new timebox with these different requirements.

CHAPTER EXERCISES

1. Create some different sound effects for your own project. Experiment with
starting and stopping different audiofiles depending upon the state of your
game, along with different sound effects depending upon what action is

occurring.

SUMMARY

Although not very long, this chapter helped you visualize what is needed for load-
ing and playing audio data, along with adding input support to your game. Feel free
to spend some time going through the code along with the material from this chap-
ter. The project is reallystarting to take shape now, so you should feel proud at your
accomplishments so far!

One of the primary goals of most games todayis the destruction of other ob-
jects or players within the game world. Processing,if one object has struck another,
forms the core of whatis known as collision detection, which you learn more about
in the next chapter.

1 3 : Collision Detection and
Physics Techniques

Chapter Goals

® Explore simple collision detection.
Introduce bounding box collision detection.
Experiment with bounding cube/sphere collision detection.
Introduce ray collision detection.
Introduce implementing the Tokamak physics library in your
application.

the game experienceis having proper collision detection. Collision detec-

tion is the art and science of determining whether one object has hit
another. Thisis a crucial aspect of the player’s experience within your game world,

as making the player a part ofthe environment helps to suspendthe player’s disbe-
lief. If your collision detection is not refined, then the player could be faced with

some jarring inconsistencies that will lessen the enjoyment.

Woe the realm of game programming, an important and crucial part of

PRIORITIZE SPEED

One problem with having 100-percent effective collision detection is the increased
risk that your game will be very slow, because it is processing these computations
during every update cycle of your game.

227

228 Game Programming in C++: Start to Finish

In the majority of game situations, the world objects will spend more time
moving and updating themselves than they will colliding with each other. For this
reason, most collision detection implementations start with a higher level approach
to quickly test whole sections of your object or world and then proceed to gradu-
ally work downward toward a pixel-perfect solution. This can keep collision testing
fast and smooth, but also allows for precise location point computing.

Axis-Aligned Bounding Box Detection
One ofthe first and most basic methods of collision detection is known as Axis-
Aligned Bounding Box detection (AABB). Thisis the process whereby you surround
your game objects with a rectangle (or cube) aligned on the x, y, and z axis. Figure
13.1 shows what this looks like.

v
J

—-"

FIGURE 13.1 A 2D axis-aligned bounding box.

For a 2D AABB, you create a rectangle around your object in orderto calculate
the min and max vertex coordinatesto use for collision detection. These two vec-
tors help you define the AABB. Listing 13.1 demonstrates one way to calculate the
min and max points.

LISTING 13.1 Calculating a 2D AABB

//define an AABB skeleton object
class AABB

{

Collision Detection and Physics Techniques

~~
229

public:
Vector3 m_vecMin, m_vecMax;
void generateBox(const Vector3& vec);

static bool doCollision(const AABB& obj1);
bs

//given a list of vertices, go through each one to find the min and
//max points while expanding the bounding box as necessary
void AABB::generateBox (const Vector3& vec)

{

if(vec.x < m_vecMin.x) m_vecMin.x = vec.X;
if(vec.x > m_vecMax.x) m_vecMax.x = vecC.X;

if(vec.y < m_vecMin.y) m_vecMin.y = vec.y;
if(vec.y > m_vecMax.y) m_vecMax.y = vec.y;

}

Now that you have generated your AABB for an object, you can useit to per-
form basic collision detection as shown in Listing 13.2.

LISTING 13.2 AABB Collision Detection

inline bool AABB::doCollision(const AABB& b2) const
{

// Early-fail for nulls
if (this->isNull() || b2.isNull())

return false;

if (mMaximum.x < b2.mMinimum.Xx)

return false;
if (mMaximum.y < b2.mMinimum.y)

return false;

if (mMinimum.x > b2.mMaximum.Xx)

return false;
if (mMinimum.y > b2.mMaximum.y)

return false;

// otherwise, this AABB must be intersecting
return true;

230 Game Programming in C++: Start to Finish

For an axis-aligned bounding box that extends into three dimensions, you just
need to add an appropriate check for the z (depth) coordinate.

Bounding Sphere Collision Detection

The axis-aligned bounding boxis one collision container to surround your object
in. Depending on the object in question, however, it might be necessary to provide
a different approach for collision detection. Another popular method of determin-
ing when objects collide is to surround your object with an invisible sphere. Listing
13.3 defines a bounding sphere.

LISTING 13.3 Bounding Sphere

Jw
* This object is used as a form of collision detection. It is a
"bubble" that

* forms a container around the object in question
*
class PEONMAIN_API BoundingSphere

{

public:
/** the center of the sphere */
Vector3 m_vecCenter;

/** the radius of the sphere */
float m_fRadius;

/**
* This method is used for collision detection purposes.
*/
static bool doCollision(const BoundingSphere& obj1);

bs

Now that you have defined the sphere, you can useit in collision detection
tests. See Listing 13.4 for an example of processing a collision.

LISTING 13.4 BoundingSphere::doCollision

bool BoundingSphere::doCollision(const Sphere& s) const
{

return (s.mCenter - mCenter).length() <= (s.mRadius + mRadius);
}

Collision Detection and Physics Techniques

~~
231

Depending on the situation or mesh itself, bounding spheres might be more
appropriate for collision tests than AABBs. One issue to keep in mind with bound-
ing spheres, however, is that they can be controlled only by the radius of the sphere,
whereas the axis-aligned bounding box has two or three axes points with which to
work.

For example, surrounding a long cylindrical object such as a hammer is better
suited with an AABB since you can stretch the y-axis to contain the handle of the
hammer. A bounding sphere would instead sometimes produce erroneous results,
since the bounding sphere would encompass an area as wide as the object is long.

PLANE COLLISIONS

In mathematics, a plane is defined as a section of space that is perfectly flat and
extends to infinity on two dimensions. Thus far, the most obvious use of planes
during collision detection calculations has been with the discussion surrounding
the View Frustum culling algorithm detailed in Chapter 8, “Scene Geometry Man-
agement.” The standard plane equation is defined as shown in Equation 13.1:

ax+by+cz=d (13.1)

Equation 13.1 equates to a vector representing the normal of the plane whose
x, y and z components are represented by a, b, and ¢, respectively. The constant d

represents the distance the plane is from the origin. Listing 13.5 provides the Plane
object defined in Peon.

LISTING 13.5 Plane CLASS

namespace peon
{

Ex
* This object is used to encapsulate some basic functionality
* of a Plane object
5
class PEONMAIN_API Plane
{

public:
/** Constructor */
Plane();
/** Destructor */
~Plane();

232 Game Programming in C++: Start to Finish

/** normal vector of the plane */
Vector3 normal; :

/** constant defining distance from origin (0,0,0)
|

float d;
bs

Collision of Plane versus AABB

In Chapter 8, “Scene Geometry Management,” you learned how to calculate the in-
tersection of a bounding sphere with a View Frustum plane. Another use of plane
collision tests is to calculate an intersection between an axis-aligned bounding box
and a plane. Listing 13.6 details how this calculation is performed.

LISTING 13.6 Plane versus AABB

bool Plane: :doAABBCollision(const AABB& box) const
{

//grab list of corners
Vector3* pCorners = box.getCorners();
Plane: :Side lastSide = this.getSide(pCorners[0]);
//test the four corners of the AABB with the plane.
//1f we are using a 3D AABB, then there should be 8 corners
for(int corner = 1; corner < 4; ++corner)

{

if(this.getSide(pCorners[corner]) != lastSide)
{

return true;

}

//did not collide
return false;

RAY COLLISIONS

Another useful mathematical entity that you can use for collision detection tech-
niquesis the ray. A ray contains two vectors: one to define its starting point and the
other to define the direction in which the ray travels. Listing 13.7 defines the Ray ob-
ject defined in the Peon toolkit.

Collision Detection and Physics Techniques

~~
233

LISTING 13.7 Ray Definition

Namespace peon
{

[**
* This object is used to define and encapsulate some basic
functionality

* for using Ray objects within the game world. Rays only have 2

components:
* a vector representing the origin of the Ray, and a vector to
represent
* the direction of the Ray.
wy

class PEONMAIN_API Ray
{

public:
/** Constructor */
Ray ();
/** Destructor */
~-Ray();

/** Origin of the Ray */
Vector3 vecOrigin;
/** Direction of the Ray */
Vector3 vecDirection;
bs

Collision of Plane versus Ray

A popular use for raysis to test the distance between the ray and the plane. You first
need to calculate the angle alpha between the normalof the plane and the ray vec-
tor by using the dot product.

If the cosine ofthis angle is zero (meaning the angle is 90 degrees), then the two vec-

tors will not cross each other.

The next step is to find the difference (D) between the distance between the

plane and the origin and the distance of the ray from the world origin. Using

trigonometry, you then can find the desired distance by dividing D by alpha. List-

ing 13.8 demonstrates how this can be done with the Ray object.

234 Game Programming in C++: Start to Finish

LISTING 13.8 Ray versus Plane Calculation

[**
* This method tests to see if the Ray intersects with the
* Plane object. It returns a 1 if there is an intersection
* and a 0 otherwise.
*f
int Plane: :TestRayCollision(const Ray& ray,

Vector3 collision_normal,
float collision_distance) const

//first calculate the dot product between the direction vector of
//the Ray, and the normal vector of this plane
float fDotProduct = ray.vecDirection.calculateDot(this.vecNormal 1%

//if the dot product calculation is invalid, then exit
if(fDotProduct < 0.0f && fDotProduct > -0.0f)

return 0;

//now just calculate the distance to the collision point from
//the given origin of the ray
float fCollPointDistance = this.vecNormal.calculateDot (

this.d — ray.vecOrigin)) / fDotProduct;

/1if the collision occurred behind our starting point, then exit
if(fCollPointDistance < -ZERO)

return 0;

collision_normal = this.vecNormal;
collision_distance = fCollPointDistance;

//success, there is a collision!
return 1;

IMPLEMENTING PHYSICS

The trend in the past decade or so for most games has been to differentiate them-
selves based on their graphics capabilities. Every year, titles would try to separate
themselves from the pack by boasting new texture manipulation techniques, world
environment appearance, or even simply by the demonstration of different
weapons and their explosions within the game world. Today, however, there is
more emphasis on other aspects of the game. The bleeding-edge graphics engines

Collision Detection and Physics Techniques

~~
235

are more or less the same now, and so the game marketing teams no longer rely on
different graphical effects to sell the product.

Tofill the gap, a popular trend among most games todayis the demonstration
of an advanced physicslibrary to achieve a higher level of realism. Games like Half-
Life 2 and other popular titles boast the ability to manipulate just about every object
within the game world to give the player a new level of freedom and interaction.
There are also some rumors surrounding the work of video hardware vendors in-

corporating physics techniques within upcoming graphics card architectures. If

you are so mathematically inclined or do not mind spending a lot of time working
with physics textbooks, then thisis a very exciting time! On the other hand, if you
are not so strong with math or simply do not have the time and patience to develop

your own physicslibrary from which to work, many usefulchoices are available on
the Internet that provide a professional simulation of physics.

For the purposes ofthis book, you will be using the Tokamak physics library to

provide a wayto render realistic rigid body effects. Rigid body dynamics is a field of
study involving the dynamic simulation of a rigid collection of points. In other
words, a rigid bodyis a solid entity of a given size that does notalter its shape re-

gardless of any external forces.

Using the neSimulator

ON THE CD

For handling the calculations necessary to perform rigid body collisions, you first

need to prepare your world environment. The nesimulator object from the Toka-
mak library is used to encapsulate the number of bodies within the simulation,

along with a few other properties. It is a required object within any application
using Tokamak and acts as the main access point for processing the physics in the

scene. Listing 13.9 details how to initialize your world to use the nesinulator, taken

from the /chapter_13/CubeSim sample found on the CD-ROM.

LISTING 13.9 Initialize the neSimulator

bool MainApp::onLoadWorld()
{

//first declare some Tokamak specific simulation
//objects. These are in MainState.h
//neSimulator* m_pSimulation;

/ /neRigidBody* m_pCubeObjects[MAX_BODIES 1];

//define a gravity for our simulation. It can be anything!
neV3 gravity;
gravity.Set(0.0f, -10.0f, 0.0f);

236 Game Programming in C++: Start to Finish

//The neSimulatorSizeInfo basically defines an overall "world"
//set of properties
neSimulatorSizeInfo sizeInfo;

sizelInfo.rigidBodiesCount MAX_BODIES;
sizeInfo.animatedBodiesCount NUM_BLUE_PLATFORMS;;
sizeInfo.rigidParticleCount = 0;
sizeInfo.controllersCount = 0;

/1 Use the following formula to compute the number of overlapped
//pairs required:
//(num_rigid_bodies * num_animated_bodies) + num_rigidbodies *

//(num_rigid_bodies - 1) / 2

sizeInfo.overlappedPairsCount = (MAX_BODIES *

NUM_BLUE_PLATFORMS) + MAX_BODIES * (MAX_BODIES - 1) / 2;
sizeInfo.geometriesCount = MAX_BODIES +

NUM_BLUE_PLATFORMS;

sizeInfo.constraintsCount 0

sizeInfo.constraintSetsCount 0
sizeInfo.constraintBufferSize 0

sizelnfo.sensorsCount = 0;
0

0
sizeInfo.terrainNodesStartCount
sizeInfo.terrainNodesGrowByCount I

//Create the overall simulation using the properties structure
/1you just filled in, along with the gravity you want to apply//to the game world.
m_pSim = neSimulator::CreateSimulator(sizeInfo,NULL,&gravity);

Although the nesimulator object controls the simulation, you need to add
actual objects to simulate. Entities that are able to act as rigid bodies are referenced
as neRigidBody objects.

The first step in setting up the simulation is selecting a gravity constant that will
be applied to the scene. This constant can be anything you want and isa fun waytowreak havoc with Newton’s principles.

The real configuration of our simulation is done by manipulating the
neSimulatorSizeInfo structure, which is used during the initialization of the

neSimulator object. In Listing 13.9, you are specifying how many rigid bodies will
be in the simulation. Oneof the other important propertiesto define is how manybodies can be in a collision. The SDK documentation pretty much specifies that thiscalculation should be as shown in Equation 13.2:

MAX _ BODIES* (MAX _BODIES —1)/2 (13.2)

Collision Detection and Physics Techniques

~~
237

This calculated value is then used in the overlappedPairsCount property.
Finally, you initialize and create the main simulation by using the createSimu-

1ator method, which uses the neSimulatorSizeInfo structure as well as your grav-
ity constant.

Working with Geometry

When you have finished initializing the container for the physics engine, you
can begin to add rigid bodies to the simulation. In Listing 13.9, you used the
neSimulatorSizeInfo structure to inform the simulation container how many ob-

jects you would be working with. For the sample you are working from, you need
to generate a wall of cubes that demonstrate the ability to properly stack objects.
The neGeometry object encapsulates every rigid body within the simulation. Listing
13.10 details the process of generating new blocks to work with along with defining
the needed properties for rigid body calculations.

LISTING 13.10 Adding neGeometry Objects

neV3 cube_size;
neV3 cube_position;
neGeometry* cube_geom;
float mass = 0.1f;

//Iterate through each initial rigid body in our scene
for(int i = 0 ; i < MAX_BODIES; it+)
{

//use the current simulation to create a new rigid body handle
m_pCubeObj[i] = m_pSim->CreateRigidBody();

cubeGeom = m_pCubeObj[i]->AddGeometry();

cube_size.Set(1.0f, 1.0f, 1.0f); // Unit size

cubeGeom->SetBoxSize(cube_size);

m_pCubeObj[i]->UpdateBoundingInfo();

m_pCubeObj[i]->SetInertiaTensor(
neBoxInertiaTensor(
cube_size,
mass)

)s

238 Game Programming in C++: Start to Finish

//Define the mass properties for this geometry body
m_pCubeObj[i]->SetMass(mass);

//set an initial world position based on which cube object
//you are working with
if(1i==0)

cube_position.Set(0.0f, 1.5f, 0.0f);
else if(i !1=0)

cube_position.Set(0.0f, (1.5f * (float)(i + 1)), 0.0f)ik

m_pCubeObj[i]->SetPos(cube_position);

Running the Simulation with Tokamak
While your simulation progresses, your rigid body objects move and interact with
each other. Meanwhile, the Tokamak library is hard at work calculating any colli-
sions. During the updating phase of your application, collision detection functions
are called to determine whether there are any collisions within your game world.
Listing 13.11 describes how to update the simulation.

LISTING 13.11 Updating the neSimulator

//TIME_INTERVAL is defined as 0.013333f
//This can be adjusted to match something from the system clock or

our
//Timer object.
m_pSim->Advance(TIME_INTERVAL, 1, NULL);

Rendering the Geometry
You should be used to rendering something as easy as blocks within OpenGL, but
the purpose of this section is to detail how to render objects that have been put into
a Tokamak simulation. Listing 13.12 describes how to loop through the block ob-
jects you are working with in the simulation.

LISTING 13.12 Rendering the neGeometry

Matrix44 matWorld;
Matrix44 matScale;

Collision Detection and Physics Techniques

~~
239

for(int i = 0; i < NUM_CUBES; i++)

{

if (m_pCubeObj[i])

{

//convert the matrix format Tokamak uses to our own

//Matrix44 format
matWorld = NET3_TO_MATRIX44(m_pCubeObj[i]->GetTransform());

/ /demonstrate another way to render vertices, using the
//glinterleavedArrays and specifying we're enabling
//the normal and vector position
glPushMatrix();

{

glMatrixMode(GL_MODELVIEW);
//apply our transformation matrix calculated by

//the physics engine
glMultMatrixf(matWorld.m);
//render the cube with red
glColor3f(1.0f, 0.0f, 0.0);
//specify to OpenGL that we're specifying vertex
//information along with normals.
glInterleavedArrays(GL_N3F_V3F, 0, m_cubeVertices ¥;

//render the cube!
glDrawArrays(GL_QUADS, 0, 24);

}

glPopMatrix();

Cleaning Up

When you are finished with your simulation using the Tokamak library, you sim-

ply need to clean up the memory allocated by the nesimulator object. It will then in-

ternally handle the process of cleaning up any neGeometry object. Listing 13.13

demonstrates how this is done.

LISTING 13.13 Tokamak Garbage Collection

void MainApp: :onunloadWorld()
{

neSimulator::DestroySimulator(m_pSim);

240 Game Programming in C++: Start to Finish

CHAPTER EXERCISES

1. Find and research any other collision detection techniques that you might
find useful in your game engine.

2. Create some more advanced samples using the Tokamak library. One good
test could be to implement an OpenGL particle system using Tokamak to
surround and control each particle’s interaction with the scene/simula-
tion.

SUMMARY

You now have another keyto the puzzle of game development. Although render-
ing your graphics, playing the audio, and processing input from the player are im-
portant aspects of a complete game, none are more important than proper collision
detection. Nothing can be more frustrating for a player than to “hit” the enemy
only to find that the action is not detected properly. So far, we’ve covered simple
techniques used in 2D games, all the way up to some commonly used collision de-
tection for 3D engines. You were finally introduced to the Tokamak physics library
that enables you to surround each object within your game world by a geometry
mesh. Processing these geometry collisions properly allows your scene to have a
proper feel that the player will enjoy. One ofthe final components of any game cre-
ated todayis the use of networking technology to create the multiplayer experience.
In the next chapter, you begin by learning the basics of network programming.

14 : Introduction to Networking

Chapter Goals

® Introduce and discuss basic network fundamentals.
m Cover some networking components available for game

programming.
® Introduce and cover basic socket programming concepts.

is having multiplayer support. Depending upon the game, this can follow

a model similar to Battle.Net, where the player connects to a central game
server thatis responsible for hosting each game. Another available option is that

your gameis responsible for hosting a session on your local area network or across
the Internet. Properly tweaked and balanced multiplayer support can add a great
layer of depth to any title.

O ne of the most popular features available to any game on the market today

NETWORKING BASICS

To understand network game programming and its dynamics, you need a fairly co-
hesive understanding of how networks themselves operate and what options are

241

242 Game Programming in C++: Start to Finish

available on the PC today. Usually, when learning network programming for the
first time, you are introduced to lower level concepts. However, this adds an un-
necessary level of difficulty and confusion. Instead, in this chapter, you shall beginwith a higher level approach and moveyour way downward into the grittier details.

Whena situation involves two or more players in some kind of gaming envi-
ronment, a final decision usually needs resolving. For example, in a competitivehead-to-head (or deathmatch) scenario, a decision needs to be made whether player
A has killed player B or vice versa. The game cannot function properly if player A
receives feedback that player B is dead, and likewise player B receives the same con-firmation about player A. To help manage this conflict resolution, network gamecommunication can be architected in two ways: client-server or peer-to-peer. This is
also collectively referred to as the network topology (or structure).

Peer-to-Peer
The peer-to-peer architecture is characterized by the fact that every machine in the
network communicates their state to every other machine in the network. Although
one machine needs to be designated as the host, or boss,of this network, the archi-
tecture allows a more distributed approach for each peer machine. This is outlined
in Figure 14.1.

A |< ~ B- ae

; Ly
Cc “| D

FIGURE 14.1 Peer-to-peer topology.

A

An advantage to this type of architecture is thatif the host machine should dropfrom the network, it is possible for the rest ofthe connected machines to elect anewhost to keep the session running. Machines thatare involved in this network setup
can also communicate directly with any other machine in the network. An obvious

Introduction to Networking

~~
243

disadvantage to this type of networking approach is thatas the number of peer ma-
chines increase in the network, so does the amount of network traffic.

There is no set rule for the amount ofpeers to allow in one session. Thisall depends
on the type of game you are creating, along with what kind of gameplay or action

VOTE you are trying to simulate. The goal is to allow as many players as possible to enjoy

the exciting game, while optimizing network communication. The rule of thumb is

to keep the maximum number ofplayers involved in a session in the low teens.

Client-Server

Another popular choice for network game developers is the client-server architec-

ture, where one machine is designated the server and is responsible for listening for

requests from all of the players, known as the clients. This is shown in Figure 14.2.

A B

Server
4

Cc D

FIGURE 14.2 Client-server topology.

The server is also in charge of tracking the single, definitive state of the game
world and updates the clients as necessary with this view. Clients cannot communi-
cate with each other directly but must use the server as an intermediary messenger.
This networking model allows for a much higher number of players in the game.
One caveatto keep in mindis that the speed of any networked game becomes largely

dependent upon the hardware (and network connection) ofthe server machine.

244 Game Programming in C++: Start to Finish

TCP versus UDP

After deciding upon the topology model to follow, the next important choice that
needs to be madeis the network protocol thatis used for your game. The network
protocol defines some conventions, rules, and data structures that control how the
machines will exchange information over the network.

The data that needs to be sentis never sent “as is,” because you wantto opti-
mize the communication exchange within the network. Instead, the networking
protocol mustfirst deconstruct the data you want to send into atomic units of in-
formation known as packets. Each packet contains some header information that
describes the data within the packet, where it is going, and some other helpful in-
formation about the eventual reconstruction process. This stream of packets is then
sent to the destination machine, each packetis then reconstructed back into the
original data. The Internet operates in a nondeterministic nature so you can occa-
sionally lose a packet or two along the way (known as packet loss) or can have a
situation in which one packet sent later arrives before the previous packet (known
as packet ordering). Dealing with packet loss and ordering requires some important
decisions, and each protocol has their own mechanism of handling it.

The Transmission Control Protocol/Internet Protocol (TCP/IP) is whatis known
as a streaming protocol and is most commonly used for thingslike Internet browser
communication, business applications, and so on. TCP functions as a reliable pro-
tocol, so the underlying network mechanism guarantees that the order of data that
is sent across the network is reconstructed in the same order on the otherside. Fig-
ure 14.3 details the information stored in a TCP packet header.

0 15 16 31

16-bit source port number 16-bit destination port number

32-bit sequence number

32-bit acknowledgement number 20 bytes

-bi U[A[P|R|S]|F| R|C[s|s|¥[I 16-bit window sizelength (6 bits) G|K|H|T|N|N
16-bit TCP checksum 16-bit urgent pointer

7 options (if any) /
1 data (if any)

1

FIGURE 14.3 TCP packet header

Introduction to Networking

~~
245

The algorithms underneath the TCP protocol handle any packet loss or misor-

dering by signaling the sending machine to resend the missing data stream. Some

popular games using TCP as the networking protocol include Blizzard's World of

Warcraft and EA’s Ultima Online.
The User Datagram Protocol (UDP) is the other option available for network

game programming. UDP is known as a connectionless and unreliable protocol,
since the packets that are sent to the destination machine can be received in any
order, and some might not even arrive. Figure 14.4 details the information stored
in a UDP packet header.

0 15 16 31

16-bit source port number 16-bit destination port number
8 bytes

16-bit UDP length 16-bit UDP checksum

; data (if any) 7

FIGURE 14.4 UDP packet header

Some popular games using UDP as the networking protocolare Id’s Quake?
and Quake3 and NCSoft’s City ofHeroes.

The main difference between these two protocols is that when using UDP there

is no packetloss algorithm or mechanism for packet recovery or ordering. If a packet
of data is lost, thenit is not resent by the sender machine. Because ofthe fact that it

is a connectionless protocol, the packet header size is also slightly smaller than that
of a TCP packet header size. This slightly increases the speed of UDP packets

through the transmission process.
Another decision that needs to be made in the networking library is to deter-

mine how to communicate with the underlying protocol. On the Windows plat-
form you have several choices, but there are three that are most popularly used for

games: DirectPlay, Winsock, and an SDL alternative, SDL_net.

DIRECTPLAY AND WINSOCK

Introduced by Microsoft in the DirectX3.0 SDK (and subsequently overhauled and

updated for the DirectX8.0 SDK), DirectPlay has existed as a middleware component

246 Game Programming in C++: Start to Finish

to aid the programmer in developing network-enabled games. DirectPlay acts as an
interface to the underlying network layer of the machine, taking overthe tasks of
socket communication and packet management. The strength of this approach is
that the game programmer need not concern himself with low-level socket pro-
gramming, but can instead focus efforts on communicating the various game states
through a messaging approach. You simply signalto DirectPlay which type of mes-
sage needs to be sent and when, and DirectPlay takes over the underlying work of
queuing message requests and sending/receiving them across the network or Inter-
net using the Winsock function calls. Although DirectPlay is a multithreaded com-
ponent, it guarantees that you process only one message at a time in the messagehandler callback. DirectPlay also provides a throttling mechanism so thatif it de-
tects that your network traffic is getting congested, it will automatically drop unim-
portant messages from the network stream.

As of the Summer 2004 release of the DirectX SDK, Microsoft has chosen to dep-
recate the DirectPlay interfaces. Although they will still be included in the distrib-
uted runtimes for DirectX for now, they will probably disappear around the release
of Windows Vista.

NOTE

The alternative to using DirectPlay is to handle your networking protocols
using the sockets API provided with the Winsock library. Originally based upontheBSD socket implementation on the UNIX platform, Microsoft has ported the li-
brary over to Windows while making a few additions and modificationsof its own.

Winsock has become a popular networking library for the Microsoft Windows
family of products, and quite a large numberof multiplayer games use this API di-
rectly for network communication. One advantage to using Winsock is that you are
working directly with the socket layer that DirectPlay hides from you. You can,
therefore, make any optimization that is required for your own multiplayer needs.

If the eventual goal ofyour networking library is to function in a cross-platform en-
vironment, avoid using any of the Microsoft specific socket methods beginning with
the WSA prefix. This can be accomplished with a few #define blocks along with a
bit of well-structured networking objects.

SDL NET

To round out the family of libraries available for use in SDL, the SDL_Net library
provides an abstraction layer for socket programming. Because it works within the
SDL framework,it is a cross-platform networking solution. Instead of dealing with

Introduction to Networking

~~
247

sockets directly, you will instead use the spL_Net function calls to handle your
network communication. Figure 14.5 provides a basic top-level view ofthe SDL_Net

architecture.

Game Engine

\

SDLnet
A

Winsock

/

Operating System

FIGURE 14.5 SDL_Net architecture

STARTING A BASIC SERVER

When starting out, server applications simply listen for incoming requests from

connecting client machines. When a client attempts to make a connection, SDL_Net

is notified and passes this event on to the server application, which then decides

how to handle it. One approach that the server application uses to handle multiple
clients is to spawn a new thread for each client. This model of client-server pro-
cessing uses what are known as blocking sockets, which pause temporarily to wait for

incoming data, connection requests, or other Winsock events. Listing 14.1 demon-
strates how to prepare the server for client connections using the TCP protocol
from the spL_Net library.

LISTING 14.1 SDL_Net TCP Server

int main(int argc, char* argv[])
{

//At the very least, you need to initialize the video subsystem
of SDL

Game Programming in C++: Start to Finish

if (SDL_Init(SDL_INIT_VIDEO) < 0)

{

return -1;
}

/1 initialize SDL_net library
if(SDLNet_Init() < 0)
{

return -2;

//define a port to listen on
Uint16 port = 9000;

// Resolve the argument into an IPaddress type
IPaddress server_address;
if (SDLNet_ResolveHost (&server_address,NULL,port) <0)
{

return -3;

/1 open the server socket
TCPsocket server_socket;
server_socket = SDLNet_TCP_Open(&server_address);
if (!server_socket)
{

return -4;

//store a client connection and the remote ip address
TCPsocket client_socket;
IPaddress* remote address;
char message[1024];
int len;
Uint32 ipaddr;

//The general "process" here is to infinitely loop until
//a ‘quit’ message is received
while (1)
{

/1 try to accept a connection
client_socket = SDLNet_TCP_Accept(server_socket);
if(!client_socket)
{

a

Ca
ae

LE

%hu\n",

Introduction to Networking

~~
249

// no connection accepted
SDL_Delay (100); //sleep 1/10th of a second

continue;
}

// get the clients IP and port number

remote_address = SDLNet_TCP_GetPeerAddress(client_socket);
if (!remote_address)
{

continue;
}

// print out the clients IP and port number
ipaddr=SDL_SwapBE32(remote_address->host);
OutputDebugString ("Accepted a connection from %d.%d.%d.%d port

ipaddr>>24,
(ipaddr>>16)&0xff,
(ipaddr>>8)8&0xff,

ipaddr&Oxff,
remoteip->port);

// read the buffer from client
len = SDLNet_TCP_Recv(client_socket,message, 1024);

//close off the client socket
SDLNet_TCP_Close(client_socket);
if(!len)
{

printf ("SDLNet_TCP_Recv: %s\n",SDLNet_GetError());
continue;

// print out the message
printf ("Received: %.*s\n",len,message);
// if the string received is a "quit" command

if (message[0]=="Q")
{

printf ("Quitting on a Q received\n");
break;

;

250 Game Programming in C++: Start to Finish

/1 shutdown SDL_net
SDLNet_Quit();

// shutdown SDL

SDL_Quit();

return 0;
}

After initializing the sDL_Net layer with the SDLNet_Init() function, the ap-
proach that you normally take with setting up a server socketisto first select a port
on which to listen. Thisis also known as binding. After you have decided on a port
to bind to, you must then create and fill an 1Paddress structure with the proper
information for your server. When this structure has beenfilled out by the spL_net
library, you open the socket with the sbLNet_TCP_Open() function using the newly
generated IPaddress information. If everything was initialized correctly, the appli-
cation then movesinto an infinite loop where it attempts to accept a socket con-
nection from a client. If one exists, then you are reading the data sent by theclient.
After that is finished, the program shuts down and closes the socket from the client
with the sbLNet_TCP_Close function. After the main loopis finished, the application
cleans up the underlying networking objects using the spLNet_quit () function.

STARTING A BASIC CLIENT

Now that the server application is patiently waiting for client connections, you will
be introduced to how to create a simple client and connect to the server. Listing
14.2 demonstrates how to setup a simple client using TCP sockets from the spL_net
library.

LISTING 14.2 SDL_Net TCP Client

int main(int argc, char* argv[])
{

char streError[256];
/1At the very least, initialize the video subsystem
if (SDL_Init(SDL_INIT_VIDEO) < 0)
{

return -1;

Introduction to Networking

~~
251

// initialize SDL_net

if(SDLNet_Init() == -1)
{

sprintf (strError, "SDLNet_Init: %s\n",SDLNet_GetError());
OutputDebugString(strError);
return -2;

IPaddress ip;
TCPsocket sock;
char message[1024];
int len;
Uint16 port = 9000;
// Resolve the ip address taken from the command line into an

// IPaddress type
if (SDLNet_ResolveHost(&ip,argv[1],port) == -1)
{

sprintf (strError, "SDLNet_ResolveHost:
%s\n",SDLNet_GetError());

OutputDebugString(strError);
return -3;

// open the server socket
sock = SDLNet_TCP_Open(&ip);
if (!sock)
{

sprintf (strError, "SDLNet_TCP_Open: %s\n",SDLNet_GetError());
OutputDebugString(strError);
return -4;

// read the buffer from stdin
printf ("Enter Message, or Q to make the server quit:\n");

fgets (message,1024,stdin);
len=strlen(message);

// strip the newline
message[len-1]="\0";

252 Game Programming in C++: Start to Finish

//if there is a message to send from the command line, then echo the
/ Imessage back to the screen as well as send it to the server
if(len)
{

int result;

// print out the message
printf ("Sending: %.*s\n",len,message);
//send the message to the server
result = SDLNet_TCP_Send(sock,message, len);
//simple error detection
if (result<len)

printf ("SDLNet_TCP_Send: %s\n",SDLNet_GetError());
}

;

//close off the socket
SDLNet_TCP_Close (sock);

// shutdown SDL_net
SDLNet_Quit();

// shutdown SDL

SDL_Quit();

return 0;
}

This sample code is quite similar to Listing 14.1. The small program first ini-
tializes the networking layer with the sbLNet_Init function. After this is completed,
the program is then creating a new IPaddress structure. Rather than using it for cre-
ating a server socket, however, this time around the application is attempting to
generate the necessary IPaddress information using the server’s IP address and port
number.

When creating a local client-server application, remember that your own local IP
address can either be referenced as ‘localhost’ or the IP address 127.0.0.1.

NOTE

After everything is properly created and initialized, the program then proceeds
to send a message string to the server before closing everything down and cleaning
up with the sbLNet_TCP_Close function. As in Listing 14.1, the SDLNet_Quit function
performs the necessary underlying garbage collection.

Introduction to Networking

~~
253

Sending and Receiving Data

From within both the client and server applications created in Listing 14.1 and
14.2, you are sending data from the client to the server for processing. Before clos-
ing the connection to the client, the server displays the message received through
the network.

The spbLNet_TcP_Send function is responsible for sending data using the TCP
protocol from within spL_Net. It is defined in Listing 14.3.

LISTING 14.3 SDLNet_TCP_Send Function

int SDLNet_TCP_Send(
TCPsocket sock, //a valid TCPsocket structure
void *data, //pointer to the data to send
int len) //length (in bytes) of the data

For an example of how to use SDLNet_TCP_Send to transmit some data across the
network,take a look at Listing 14.4.

LISTING 14.4 Using SDLNet_TCP_Send

// send a string over sock
//TCPsocket sock;
int len,result;
char *msg = "Timelords are from Gallifrey!";

len=strlen(msg)+1; // add one for the terminating NULL

result = SDLNet_TCP_Send(sock,msg, len);
if (result<len)

{

//error during send
}

Conversely, the spLNet_TcP_Recv function handles receiving data from the
socket. Taking a look at Listing 14.5, you can see that it has the same parametersas
the sbLNet_TCP_Send function.

LISTING 14.5 SDLNet_TCP_Recv Function

int SDLNet_TCP_Recv (

TCPsocket sock, //This is a valid connected TCPSocket
void *data, //pointer to the buffer that receives the data
int maxlen) //the maximum length (in bytes) of data to read

254 Game Programming in C++: Start to Finish

Take a look at a sample of using the SDLNet_TCP_Recv function in Listing 14.6.

LISTING 14.6 SDLNet_TCP_Recv Sample

/ /TCPsocket sock;
#define MAXLEN 1024
int result; //store the result of the SDL_Net operation
char msg[MAXLEN]; //buffer to store the incoming data

result = SDLNet_TCP_Recv(sock, msg, MAXLEN);
if(result <= 0)
{

//there was an error with the transmission. Check the status
//of the socket as it might have been invalidated.

}

You have now crossed the threshold of basic network programming and have
created a small base to build your skills upon. There is still much to cover, but
you are making good progress. Feel free to pause and review the concepts covered
previously.

Non-Blocking Sockets

Until now, your server code has been demonstrating how to use blocking sockets.
When sbL_Net works with these types of sockets, the methods used do not return
until either they succeed or they fail. In effect, these are synchronous tasks. An al-
ternative is to use non-blocking sockets, which are asynchronous in nature. When
these types of sockets are used, any calls made to SpbL_Net will return immediately,
allowing the program to continue its execution.It is then up to the programmerto
repeatedly use a type of polling method to find out whether the call has succeeded
or failed.

One problem with using a pure non-blocking solution is that you then have to
run your application in an infinite polling loop to check on any network event-re-
lated results.

Using SDLNet_CheckSockets
To benefit from non-blocking sockets without the insanity attached to having an
infinite spinning loop, on the server side you can instead use the SDLNetCheck-
Sockets method that accepts groups of sockets to see which ones are ready for read-
ing data, writing data, or are returning errors. Listing 14.7 demonstrates how it
could be used.

Introduction to Networking

~~
255

LISTING 14.7 Using SDLNet_CheckSockets

int main(int argc, char *argv([])
{

IPaddress ip;
TCPsocket sock;
SDLNet_SocketSet set;
char *message = NULL, *host;
Uint32 ipaddr;
Uint16 port = 9000;

// initialize SDL

if(SDL_Init(0) == -1)
{

printf ("SDL_Init: %s\n",SDL_GetError());
exit(1);

}

// initialize SDL_net
if (SDLNet_Init() == -1)
{

printf ("SDLNet_Init: %s\n",SDLNet_GetError());
SDL_Quit();
exit(2);

// Resolve the argument into an IPaddress type
// for now use your local machine which is defined by the
// IP address of 127.0.0.1
if (SDLNet_ResolveHost(&ip,"127.0.0.1",port) == -1)
{

printf ("SDLNet_ResolveHost: %s\n",SDLNet_GetError());
SDLNet_Quit();
SDL_Quit();
exit (3);

// resolve the hostname for the IPaddress
host = SDLNet_ResolveIP(&ip);

256 Game Programming in C++: Start to Finish

/] print out the hostname we got
if (host)

printf ("Hostname i %s\n";host);
else

printf ("Hostname : N/A\n");

// output the port number
printf ("Port ¢ %d\nf; port);

// open the server socket
server = SDLNet_TCP_Open(&ip);
if (!server)
{

printf ("SDLNet_TCP_Open: %s\n",SDLNet_GetError());
SDLNet_Quit();
SDL_Quit();
exit(4);

}

while (1)
{

int numready,i;
set = create_sockset();
numready = SDLNet_CheckSockets(set, (Uint32)-1);
if (numready == -1)
{

printf ("SDLNet_CheckSockets: %s\n",SDLNet_GetError());
break;

}

if (!numready)
continue;

if (SDLNet_SocketReady (server))
{

numready-—;
OutputDebugString ("Detecting Connection...\n");
sock = SDLNet_TCP_Accept (server);
if (sock)
{

char *name = NULL;

OutputDebugString ("Accepted Connection...\n");
if (getMsg(sock, &name))
{

Introduction to Networking

~~
257

//In your own usage, here is where you would
instantiate

//your own object which would define the necessary
/ /properties of a player in your game world.
Client *client;
client = add_client(sock,name);
if(client)

do_command ("WHO" ,client);
}

. else
SDLNet_TCP_Close (sock);

}

}

for(i=0; numready && i<num_clients; i++)
{

if (SDLNet_SocketReady(clients[i].sock))
{

//if there is a message waiting in the queue
if(getMsg(clients[i].sock, &message))
{

char *str;

numready—;
printf ("<%s> %s\n",clients[i].name,message);
// interpret commands
if (message[0]=="/’ && strlen(message)>1)
{

//this function would be executed when
//the command you want to process has been
//passed. You would define your own do_command
//function perhaps using the message and the
//client "sender" or "target" of the command
do_command(message+1,&clients[i]);

k

else // it’s a regular message
{

// forward message to ALL clients...
str=mformat("ssss","<",clients[i].name,">

: ",message);
if{str)
{

258 Game Programming in C++: Start to Finish

//This is also another function you would
//create on your own. Basically you would loop
//through each client in your list and send them

//this message
send_all(str);

}

}

free (message);
message = NULL;

}

else
{

//remove the client from your set of client objects
remove_client (i);

}

// shutdown SDL_net
SDLNet_Quit();

// shutdown SDL

SDL_Quit();

return(0);
}

Although Listing 14.7 looks complicated, there is not much going on to which
you have not already been exposed. The process of starting up and initializing the
SDL_Net library is a familiar practice by now. After the socket has finished binding
to the server,it launches into an infinite loop. Within this loop, the application first
creates an SDLNet_SocketSet structure, which is filled with as many sockets as there
are clients already connected. When this is finished, the program then iterates
through each socket within the sSbLNet_Socketset. It first inspects the socket to see
whether any network activity has taken place. If a new client request is waiting, then
the client is added to the socket set. The sample then proceeds to display any string
data that was sent by the client sockets. After the demo exits, it shuts down the net-
work and cleans up the allocated sockets.

Introduction to Networking

~~
259

TCP/IP VERSUS UDP (PART II)

As stated previously, a common and critical issue is to determine which protocol
your game will be using when choosing between TCP/IP and UDP.

As outlined previously in this chapter, TCP/IP provides you with a guaranteed
(reliable) packet delivery mechanism, although UDP does not. From this behavior
alone, you might be tempted to always use TCP/IP to handle the network commu-
nication in your game. In a regular network or Internet application that requires
this guaranteed approach to packet delivery, TCP/IP is certainly the preferred
method. In the world of game programming, however, UDP is often the protocol
of choice for multiplayer communication.

UDPis fast, compact, and connection-less, which lends itself to a high-perfor-
mance application such as a first-person shooter or real-time strategy game. The
only major drawback to using pure UDPis the fact that not only can packets arrive
in any order; they can also be dropped without notification.

For regular game action, such as running through a maze or traveling through
the game world, a few dropped packets will not make much of a difference. By the
time the next scene of your gameis processed,it is more than likely that new net-
work messages will be received with updated information. However, there are cases
in which you must receive the packet information. Combat is a good example. If
you kill another player, then everyone in the level must get the information signal-
ing that the player has died. If this message is dropped somewhere, then there could
exist several ugly scenarios of a game that is now out of sync.

Some programmers might decide to implementa solution involving both pro-
tocols. This usually centers on a plan of using UDP packets for the in-game action,
while relying on TCP/IP for any guaranteed messages. However, in practice, this
method can generate a lot of problems depending upon the implementation. De-
pendent upon the network connection, the two protocols could quickly fall out of
sync with each other, since the TCP/IP thread could be trying to resend a lot of
packets. In short, this type of algorithm should only be attempted by advanced net-
work programmers with a complete zen understanding of the two protocols and
how they are processed by the operating system and socket libraries.

A common approach to this problem is to use a mechanism loosely defined as
reliable-UDP. In a lot of ways, this approach gives you the benefits of both worlds:
the speed and small overhead associated with using UDP, with, at the same time, a
mechanism similar to the reliable, guaranteed delivery associated with using
TCP/IP. You will learn more about using reliable-UDP in the next chapter where
you add some network support to the SuperAsteroidArena project.

260 Game Programming in C++: Start to Finish

Network Address Translation

Network Address Translation (NAT) is an important issue to remember when im-
plementing your network solution. A large number of computer users now have
their own small network at home. This means that there is a mechanism in place to
share the Internet connection, either with a router such as a Linksys device, a proxy
server machine (either Windows or Linux), or through the Internet Connection
Sharing mechanism of Windows XP. This is outlined in Figure 14.6.

Internal Internet

—_—10.10.10.2Sta10.10.10.3fe10.10.10.4

FIGURE 14.6 NAT Translation.

The purpose of these devices is to take a publicly available Internet address
given to you by the Internet service provider and then filter it among the devices in
your internal network. Depending upon the algorithm used by your router/proxy
system, this can cause several problems, depending upon how your NAT device re-
members or processes each client request.

For this reason,it is usually better to run the game server directly facing the Inter-
net, as opposed to being hidden behind a router. This can help minimize any neg-

or ative issues surrounding network communication and your NAT device.

Introduction to Networking

~~
261

CLIENT-SERVER PREDICTION/AUTHENTICATION

In a client-server environment, the server contains the master copy of the game
world. The server is the final authority on whatis and what is not allowed by the
players. For this reason, it is necessary to create and establish a mechanism of action
authentication in which the server must authenticate actions performed by the
client.

The simplest way this can be doneis to have a basic authentication scheme be-
tween the client and the server. Each time the client wants to perform an action
within the game world, such as moving or firing his gun, the client must send a re-
quest to the server for its permission for the action to occur. The server then
processes this request and makes a decision on whether or notthe action is legal
and responds to the client. Depending on the number of players in the game ses-
sion, along with how often these requests are performed, this can be an acceptable
method.

This, however, can slow things down considerably as the numberofplayers in-
crease in the game world. If you are using straight UDP for the delivery mechanism,
a percentage of data can be lost between the client and server. In other words, the
client might miss authentication messages from the server and vice-versa.

Client prediction, therefore, is an effort to maintain gameplay as smoothly as
possible. Client prediction simply describes a technique that is used to handle any
consistency problems between the client and server.

Dead-Reckoning

Dead-Reckoning is a common technique for client prediction that involves the
client machine acting as a representative of the game server. Since the client knows
the state of the game world since the last update from the server, you can then use
this state to loosely authenticate client/player requests. Then when you hear back
from the server, any adjustments to the players’ position or movement can be
made. This is an effective technique used in just about every First Person Shooter
and some Massively Multiple Online Role Playing Games today.

CHAPTER EXERCISES

1. Many different open-source and low-cost commercial networking pack-
ages are available for the non-network programmer. Create a small matrix
of the strengths and weaknesses of each one before making a decision on
whatto use.

262 Game Programming in C++: Start to Finish

2. Investigate other methods ofclient prediction and learn whatis appropri-
ate for what type of solution.

SUMMARY

You covered some basic principles behind the composition and topology design of
networks, along with learning about sbL_Net and using either TCP or UDP for net-
work communication. You learned that TCP is a guaranteed delivery mechanism,
while UDP is not. You also went through some basic sbL_Net examples to learn the
basics behind how a client and server communicate with each other. The chapter
finished off with some discussion behind some techniques for managing legal
actions within the game world. In the next chapter, you will focus a little less on net-
working theory and more on creating actual network code for the S uperAsteroidArena
project.

Networking Timebox

Chapter Goals

® Explain UDP in greater detail.
m Introduce the ReplicaNet networking library.

which to work from, it is time to cover adding some networking support
into the SuperAsteroidArena project. Network socket programming is not a

topic with which most beginner (or intermediate) game developers are comfort-
able. To this end, you will be using a popular third-party solution known as Repli-
caNet to handle network communication.

NN:
that you have an introductory networking base of knowledge from

INTRODUCTION TO REPLICANET

Although you have a basic foundation of network programming from Chapter 14,
“Introduction to Networking,” it is another matter entirely to create a working
networking solution suitable for the needs of a game. Although it might feel like

you have been introduced to a lot of different topics, we have only really scratched
the surface when it comes to handling game data over the Internet or LAN.

263

264 Game Programming in C++: Start to Finish

To this end, you will be using an excellent cross-platform network library called
ReplicaNet, which has been designed from the ground up as a multiplayer solution
for games.It satisfies the requirement ofa reliable-UDP packet delivery mechanism
covered in Chapter 14, “Introduction to Networking,” which provides a hybrid
between implementing your game using strictly either TCP or UDP. The other
benefit of using this library is that it has already undergone a high level of opti-
mization and has implemented a lot of the underlying networking code that you
will not need to worry about.

Network Topology Design
Recall in the previous chapter, on the introduction to multiplayer support, that
your networked game can fall under two topologies: client-server or peer-to-peer
(P2P). Although both offer their own advantages and disadvantages, you will be
using the peer-to-peer model for SuperAsteroidArena.

Usually in client-server applications, the game logic is separated such that the
server contains the master record of the game world and processes every request by
the client(s) to move and interact within it. The client contains the code base with
all of the graphics, sound effects, and everything else that you present to the player.
The logic behind this approach is that the server can just focus on processing the
players and every other object in the game world, while the client represents the
player’s experience or view of the game world. The disadvantage of this model is

that should the server leave or be disconnected from the network, then the session
effectively ends.

By creating the SuperAsteroidArena project in a peer-to-peer design with Repli-
caNet, you are able to take advantage of a networking layer that can automatically
poll the network to find a new “host” node should the current server be discon-
nected. This is an attempt to minimize any session loss between the players in the
group.

Networking Timebox

From the timebox allocated to this phase of implementation, the goal is to create a

game server and add enough capabilities to any peer instance to move and shoot
each other within the game world. This network design layout behind the Super-
AsteroidArena project allows you to keep the code in one project which is used to
distribute the game world objects around each peer node in the network. The client
application is the one you have been working on throughout this book. It contains
the graphics, sounds, and everything else presented to the player. The server appli-
cation, on the other hand,is solely responsible for maintaining the main view of the

Networking Timebox

~~
265

~

game world. It does not display any graphics or play any sound effects. Because
most multiplayer games support a chat feature of some kind, you will also add
some basic text sending in this timebox.

MAKING ADDITIONS TO PEON

To make these networking additions to the game, you first need to create and up-
date some components of the underlying Peon engine. This will allow you to cre-
ate the necessary mechanisms to process network messages.

Creating the NetStream Object

Although you can create a small hierarchy of networking-related components in
the Peon engine, you first create an object that will encapsulate both client and
server processing.

When this timebox is completed, feelfree to make any adjustments to the Peon net-
working modelto fit your own multiplayer practices.

wOTE
Start by working through a skeleton application that manages a peer-to-peer

~~. configuration. This chapter’s code is taken from the NetworkLayer.cpp file in the
owmeco project folder and is defined in Listing 15.1.

LISTING 15.1 NetworkLayer.cpp

bool NetworkLayer::onLoad()
{

//snip
//create a new Network instance
m_pNetwork = new NetworkLayer();
m_pNetwork->SetManualPoll(); // Make ReplicaNet use the manual

// poll method.

//allow the XPsession / XPURL threads to use automatic scheduling
m_pNetwork->SetPollLayerBelow(false);
m_pNetwork->SetPolllLayerBelowForXPSession (false);

m_pNetwork->SetAutomaticPollXPSession();
m_pNetwork->SetAutomaticPol1IXPURL();

return true;
}

266 Game Programming in C++: Start to Finish

ReplicaNet makes careful use of threads to process network events and mes-
sages. The main benefit of using ReplicaNet is thatit allows you to focus more on
processing network events than actually dealing with the lower level socket com-
munication and threading.

When the network layer object is communicating properly,it will receive event
notifications automatically when a player joins or leaves the game, or other objects
need to be synchronized among the nodes.

Working with Message Types

When the client and server are talking to each other, you need to define what net-
work messages you will listen for and process. These messages are almost always
game-specific, which is why ReplicaNet does nottry to define its own message
types (beyond the extreme basics).

Instead, each object that you wish to replicate in the master database through
ReplicaNet needs to have an identifier “type” attached, for easier processing on
each node in the network.

For the most part, there are only two object types that you will need to use for
any object that wishes to be involved in the network: Certain() and Reliable().

The benefit of using ReplicaNet is that you can throw any kind of object into
the database which will then be optimized to send under the covers. You do not
need to worry about manually creating some packet objects or mechanisms to do
this.

UPDATING PLAYERS

Most of the fun of multiplayer games derives from being able to challenge other
human players. Although you were introduced to a few basic client predication
concepts in the previous chapter, you become more familiar with them here. Since
the SuperAsteroidArena game is meant as a small battleground, you only need to
implement some basic client prediction techniques to keep the flow of the gamefast
and furious. To begin with, you will need to actually define your Player object,
which represents each player in the session. Listing 15.2 demonstrates this.

LISTING 15.2 Player Definition from Player. rol

object Player
{

//this script defines two datablocks for the Player entity in our
/ /game
datablock Predict_Float;

Networking Timebox

~~
267

datablock NData;
//snip!

//ensure that this object is defined using the Certain transmission
//"type" instead of Reliable(). Certain will use less bandwidth

Certain();
}

When you have the basic player set up and able to fly around your game world,

you need a wayto allow other players to join/leave your session, as well as update
every player’s view of the game world.

Session Hosting/Joining

During the design of the game, it was decided that the game would not start until
all the players have finished joining to the session. Although there is no chat room
location in the game, this would be a good place to use one. It would allow the play-
ers to communicate with each other prior to the game, allowing for much trash
talk. The ReplicaNet library references other machines in the network, not by IP ad-
dress, but rather using sessions. After the session starts, however, any new player at-

tempting to connect to the session will be denied. Listing 15.3 gives a sample
method of handling join requests.

LISTING 15.3 Handling Player Join Requests

bool NetworkLayer::joinSession(const String& strURL)
{

m_pNetwork->SessionJoin(strURL);

return true;

}

Likewise, when a player wants to leave the game, he should be allowed to drop
out of the session without disrupting every other active player. Listing 15.4 shows

one way to handle this.

LISTING 15.4 Handling Player Drop Requests

void NetworkLayer::disconnect()
{

m_pNetwork->Disconnect() ;
}

268 Game Programming in C++: Start to Finish

Players Tend to Move Around

After the session begins, every player involved in the game will naturally begin to
move around the game world in an attempt to win the round. The server will be the
continuous authority of the game world, sending view update snapshots to every
player in the game. This is a basic attemptto ensure that some of your players do
not try to cheat the game.

After a player (or anyotherentity) is added to the master database for the ses-
sion using the Publish method, the objects are updated automatically when they
need to be.

When you adjust your player’s position, for example, the changes are reflected
at a lower level, and ReplicaNet is alerted to the fact that it needs to wake up and
propagate these modifications to the master database.

Players Want to Fire

As the players move around the game world, they will also have the ability to fire
laser blasts at each other in an attempt to be the last player standing. Again, you
have to be somewhat careful of possible cheating attempts by clients in your ses-
sion—especially whenit comes to computing any change of health, positive or neg-
ative. Listing 15.5 begins some details on adding the ability to process laser blasts.

LISTING 15.5 Player Fire events

Projectile *proj = new Projectile();
proj->SetPosition(mPlayerConrolledPlane->GetPosition());

proj->SetRotation(mPlayerConrolledPlane->GetRotation());
proj->Publish();

TIMEBOX EVALUATION

You should be getting used to it by now, but again pull out your design documen-
tation and ensure that you have completed everything assigned for this timebox. Do
the multiplayer aspects meet your criteria as outlined in the document? Are you
happy with the network communication layer, oris there a need to create/design a
new one?

These thoughts should appearin any notesfor this timebox along with any de-
cisions that need to be made.

If you decide to alter the requirements of this timebox, do not forget to keep the
design documentation updated. As you have done before, create a new timebox
with your desired requirements.

Networking Timebox

~~
269

CHAPTER EXERCISES

1. You have covered only one or two events involved in the SuperAsteroidArena
game. Add some networking events to the game to create a more intimate
experience for the player.

2. Add somebasic chatting capabilities to the game. When the player hits a
certain key, it should open a small chat window to send some text to the

server, which will send it to every other player
3. Ensure the prediction techniques you implemented in the game are suffi-

cient to handle your projected min and max number ofclients joined to the

session.

SUMMARY

Adding network support to any game is no trivial task and should not be taken

lightly. Proper planning must be in place; be aware of the time and cost involved in

doing so for any of your projects, especially if you intend to create your own socket

library. Though you were able to take advantage of ReplicaNet, which is a very use-
ful third-party networking library, there are always hurdles to face when designing

games that communicate over a network. Leave some time in your project planning
to properly test the networking layer if you want to add it to your game.

In the next chapter, you begin focusing on using your favorite modeling soft-

ware to create and display meshes within your game world.

Introduction to Models

Chapter Goals

® Work with the 3DS model format.
® Introduce model animation and the MD3 format.
® Introduce and discuss the Collada initiative.

practices of getting various game assets into the engine. You have been
shown how to load texture information and how to use music and sound ef-

fects. One of the most popular remaining assets left to coveris the generation and

manipulation of model objects within the game world.

Tomes’
this book you have been introduced to various methods and

MODEL GENERATION

A model (or mesh) represents a collection of vertices and textures to define an
object within a game world. In most titles requiring 3D models and other artwork,

development teams tend to establish an art asset pipeline. At a high level thisis sim-

ply a method of organizing the communication between your programmer (s) and

271

272 Game Programming in C++: Start to Finish

your artist(s). The programmers must decide on certain requirements of the art-
work, such as a particular file format the models must bein, along with other details,
such as any polygon count restrictions. The artists must themselves work with the
game designer to create a common, unified vision that represents the designer’s
game world. Figure 16.1 demonstrates an overview of the model asset process.

Output
OBJ 3DS From Model

Tools

Y Y

ConversionModel Conversion
Process

Y

Manipulation
Game Engine of Model

Within Game

FIGURE 16.1 Model asset process.

The output mesh from the model tool must usually pass through a conversion
pipeline process in which the model is converted into a format thatis recognized by
your engine.

UPDATING THE MESHFACTORY IN PEON

Until now you have been using the MeshFactory interface of the Peon to create sim-
ple meshes for use in your scenes in order to display relatively simple objects such
as a box. For the majority of the projects you work on, however, it is necessary to
render some complex geometry created in external third-party modeling software
such as 3DS Studio Max, Maya, or Blender. Since the design and focus of the
OpenGL is solely on controlling the state machine to render primitive data, there
are no methods or libraries provided by the ARB to work with model information.
Thisis left to you to implement on your own.

Introduction to Models 273

A wide variety of model formats is available for use with your engine, giving

you a wide array of choices for deciding which format(s) to support. For the pur-
poses of the MeshFactory object within the Peon library, you focus on working with

a popular model format: the 3DS format.

Before using a file format for your game and/or engine, be sure to look for any li-

cense restrictions surrounding it, even though the majority offormats used in mod-

ovr eling software are free for use in your applications. Although developed by 1d

Software for Quake3, for example, the MD3 animation file format used later in

this chapteris free for use in your own applications, but proprietary models created

by commercial games stored in this format are not.

CREATING A 3DS IMPORTER

Most of thefile formats used by the modeling softwareare not readable by humans,
so it is possible and most often necessary to develop your own code for importing
model information.

: In most situations, it is often necessary to first pass the model object through a piece
of intermediary software, which converts it to a format used for your engine. Milk-

NOTE shape3D is such a tool and is available on the accompanying CD-ROM.

The 3DS file formatis somewhat more advanced in that the information is

stored in a binary format. You will now write a small object to import model in-

formation that is stored in the popular 3DS format.

Cory Listing 16.1 details the new method necessary that you will need to add to the

ome /Peon/PeonMain/include/MeshFactory.h file.

LISTING 16.1

namespace peon
{

/** This structure holds the model face information */

struct sFace
{

int vertIndex[3];
int coordIndex[3];

bs

274 Game Programming in C++: Start to Finish

/** This structure stores material information *
struct sMateriallInfo
{

char strName[255];
char strFile[255];
BYTE color[3];
int texureld;
float uTile;
float vTile;
float uOffset;
float vOffset;

bs

struct s3DObject
{

int numOfVerts;
int numOfFaces;
int numTexVertex;
int materiallD;
bool bHasTexture;
char strName[255];
UINT *pIndices;
Vector3 *pVerts;
Vector3 *pNormals;
Vector2 *pTexVerts;
sFace *pFaces;

bs

struct s3DModel
{

int numOfObjects;
int numOfMaterials;
vector<sMaterialInfo> pMaterials;

vector<s3DObject> pObject;
bs

/** This structure is used to load 3DS indicies which are stored as
* 4 unsigned shorts */
struct sIndices {

unsigned short a, b, c, bVisible;
bs

Introduction to Models

~~
275

/** This structure is used to contain chunk information
*]
struct sChunk
{

unsigned short int ID;

unsigned int length;
unsigned int bytesRead;

bs

J *
* The purpose of this object is to load the model data contained

in
* a given resource
*f
class PEONMAIN_ API MeshFactory : public ISingleton<MeshFactory>
{

//snip
public:

/** This method is used to load a 3DS model into a
* s3DModel object
Hl

s3DModel* loadMeshFrom3DS(const String& strFilename);

MeshFactory();
~MeshFactory() ;

static MeshFactory& getSingleton(void);
static MeshFactory* getSingletonPtr(void);

private:
int getString(char *);

void readChunk(sChunk *);

void processNextChunk(s3DModel *pModel, sChunk *);

void processNextObjectChunk(s3DModel *pModel, s3DObject *pObject,
sChunk *);

void processNextMaterialChunk(s3DModel *pModel, sChunk *N3

void readColorChunk(sMaterialInfo *pMaterial, sChunk *pChunk);

void readVertices(s3DObject *pObject, sChunk *);

276 Game Programming in C++: Start to Finish

void readVertexIndices(s3DObject *pObject, sChunk *);

void readUVCoordinates(s3DObject *pObject, sChunk *);

void readObjectMaterial(s3DModel *pModel, s3D0Object *pObject,
sChunk *pPreviousChunk);

void computeNormals(s3DModel *pModel) ;

void unloadData();

FILE *m_pFile;

sChunk *m_pCurrentChunk;
sChunk *m_pTempChunk;

bs

Loading the 3DS Model Data

Loading the actual 3DS data is not difficult. You use the MeshFactory object to
process one or more model datafiles. Listing 16.2 begins the process of loading the
data from the model file.

LISTING 16.2 Loading the Data

s3dModel* MeshFactory::loadMeshFrom3DS(const String& strFileName)

{

s3dModel* pModel = new s3dModel();

m_pFile = fopen(strFileName.c_str(), rb)
if(!m_pFile)

{

return NULL;
}

readChunk (m_pCurrentChunk) ;

Introduction to Models

~~
277

if (m_pCurrentChunk->ID != PRIMARY)

{

//unable to load the PRIMARY chunk from the file! Abort!
return NULL;

}

processNextChunk (pModel, m_pCurrentChunk) ;

computeNormals (pModel) ;
unloadData();

return(pModel);

Rendering the Model

Now that you have gone through the entire process of loading the model informa-
tion into memory, you can easily render this data within your OpenGL application.
Listing 16.3 demonstrates how to render the 3DS data.

LISTING 16.3 Rendering Model Data

void s3DModel::onRender()
{

for(int i = 0; i < this.numOfObjects; i++)
{

if (this.pObject.size() <= 0) break;

s3D0bject *pObject = &this.pObject[i];

if (pObject->bHasTexture)
{

glEnable (GL_TEXTURE_2D);

glColor3ub (255, 255, 255);

278 Game Programming in C++: Start to Finish

glBindTexture (GL_TEXTURE_2D, TextureArray3ds[pObject-
>materiallD]);

}

else
{

glDisable(GL_TEXTURE_2D);

glColor3ub(255, 255, 255);
}

glBegin(GL_TRIANGLES);

for(int j = 0; j < pObject->numOfFaces; j++)
{

for(int whichVertex = 0; whichVertex < 3; whichVertex++)
{

int index = pObject->pFaces[j].vertIndex[whichVertex];

glNormal3f (pObject->pNormals]| index].x, pObject->
pNormals[index].y, pObject->pNormals[index J«iz);

if (pObject->bHasTexture) {

if (pObject->pTexVerts) {

glTexCoord2f (pObject->pTexVerts[index lax,
pObject->pTexVerts[index 1.v);

}

} else {

if (m3DModel.pMaterials.size() < pObject->
materiallD)

{

BYTE *pColor = m3DModel.pMaterials[pObject->
materialID].color;

glColor3ub(pColor[0], pColor[1], pColor[2]);
}

Introduction to Models

~~
279

glVertex3f(pObject->pVerts[index].X, pObject->
pverts[index].y, pObject->pVerts| index 1.2);

glEnd();

Cleaning Up

Since you allocated quite a few data structures during the loading of your 3DS

model information, you need to rememberto clean this memory up when you are
finished with the object. Listing 16.4 demonstrates what the onunload method looks

like.

LISTING 16.4 s3DModel: :onUnload()

void s3DModel::onUnload()
{

for(int i = 0; i < this.numOfObjects; i++)
{

PEON_DELETE_ARRAY(pObject[i].pFaces);
PEON_DELETE_ARRAY (pObject[i].pNormals);
PEON_DELETE_ARRAY(pObject[i].pVerts);
PEON_DELETE_ARRAY(pObject[i].pTexVerts);

}

}

MODEL ANIMATION

Although the ability to load and render static objects created with modeling soft-

wareis a good addition to your game engine, another popular use of models is to

create stored animations. When Quake3 was released by 1d Software, the animation
format the company had created was known as the MD3 format. It defined the abil-

ity to store a model’s key-frame data for a particular animation. In other words,

rather than needing to generate or store every single cell of animation for your

280 Game Programming in C++: Start to Finish

model, you can instead defineasetof cells that are marked as transitional cells be-tween animation movements. These transitional cells are known as “key-frames.”After your game engine loads the key frames involved in an animation, it thencalculates some interpolation frames of animation between the key-frames, de-pending upon the speed of the local machine. The goal of this is to provide asmooth mechanism of model animation. If you had a faster machine, for example,then the game would automatically generate more frames of the animation to pro-duce a clean and more realistic model. In contrast, if you had a slower machine, the
game would automatically drop unneeded frames of animation in order to keep the
game as near-smooth as possible.

THE MD3 FILE FORMAT

At the highest level, the MD3 file format can be broken into two segments: theheader information and the model data. The header information defines the basiccomposition of the model, such as the number of vertices and triangle data, alongwith the offset into the model data where the distinct key-frames of animation arestored.

The MD3 format has no license restrictions surrounding it. This means that youcan freely use itfor your own models in your games. Obviously, it does not give youlicense to include copyrighted MD3 models.

Listing 16.5 starts off with the top-level MD3 header information.
LISTING 16.5 sMD3Header

struct sMD3Header
{

char fileID[4]; Il This stores the file ID - Must be "IDP3"int version; /1 This stores the file version - Must be 15char strFile[68]; // This stores the name of the fileint numFrames; /1 This stores the number of animation framesint numTags; /1 This stores the tag countint numMeshes; /] This stores the number of sub-objects// in the mesh
int numMaxSkins; // This stores the number of skins for

// the mesh
int headerSize; // This stores the mesh header sizeint tagStart; /1 This stores the offset into the file

/1 for tags

Introduction to Models 281

int tagEnd; // This stores the end offset into the file
// for tags

int fileSize; // This stores the file size
bs

The fileID attribute identifies the file being loaded as an MD3file. It mustal-
ways have a value of IDP3; otherwise, you can gracefully exit your model import-
ing process here. The numFrames attribute specifies the number of animation frames
contained in the model data, which is useful for calculating the offset into this data.

The next structure you will work with is the sMp3Mesh structure defined in List-
ing 16.6, which details the mesh information.

LISTING 16.6 sMD3MeshInfo structure

// This structure is used to read in the mesh data
// for the .md3 models
struct sMd3MeshInfo
{

// This stores the mesh ID (We don't care)
char meshID[4];

// This stores the mesh name (We do care)
char strName[68];

// This stores the mesh animation frame count
int numMeshFrames;

// This stores the mesh skin count
int numSkins;

// This stores the mesh vertex count
int numVertices;

// This stores the mesh face count
int numTriangles;

// This stores the starting offset for the triangles
int triStart;

// This stores the header size for the mesh

int headerSize;

282 Game Programming in C++: Start to Finish

// This stores the starting offset for the UV coordinates
int uvStart;

// This stores the starting offset for the vertex indices
int vertexStart;

// This stores the total mesh size
int meshSize;

bs

Next you will learn about the tag structure used to rotate and work with child
objects. Listing 16.7 details this tag information.

LISTING 16.7 sMD3TagInfo

struct sMd3TagInfo
{

char strName[64]; //This stores the name of the tag
Vector3 vecPosition; //This stores the translation
float rotation[3][3]; //Stores the 3x3 rotation

bs

Bone information for the MD3 model format can be loaded and stored into an-
other structure shown in Listing 16.8.

LISTING 16.8 sMd3BoneInfo

struct sMd3BonelInfo
{

float mins[3]; //This is the min (x, y, z) value for the bone
float maxs[3]; //This is the max (x, y, z) value for the bone
float position[3]; //This supposedly stores bone position
float scale; //This stores the scale of the bone
char creator[16]; //The modeler used to create the model

};

The vector normals and vertex indices can be loaded and stored within a struc-
ture as outlined in Listing 16.9.

Introduction to Models 283

LISTING 16.9 sMd3TrianglelInfo

struct sMd3TriangleInfo
{

signed short vertex[3]; //The vertex for this face
unsigned char normal[2]; //This stores some normal values

bs

Indexes into the vertices of the vertex and texture coordinate arrays can be
loaded and stored into the structure outlined in Listing 16.10.

LISTING 16.10 sMd3FacelInfo

struct sMd3FaceInfo
{

int vertexIndices[3];
bs

U, V coordinate information, which is used for texture manipulation purposes,
can be contained within a structure as shown in Listing 16.11.

LISTING 16.11 sMD3TexCoordInfo

struct sMd3TexCoordInfo
{

float textureCoord[2];
bs

Finally, the skin name is loaded and stored into a structure defined in Listing
16.12.

LISTING 16.12 sMD3SkinInfo

struct sMd3SkinInfo
{

char strName[68];
bs

284 Game Programming in C++: Start to Finish

C9 If you take a look in the /chapter_source/bin/media/md3 folder on the CD-
MMED ROM, you will notice that each MD3 model is defined by three segments: the head,

upper body, and lower body.
Now, you will learn how to load and incorporate this data into the Peon engine

in order to render and animate any MD3file.
The AnimatedMeshFactory

According to the Peon design with regard to working with model information,
there should be a level of abstraction between the model format (thatis, MD3) and
the Peon engine itself. The advantage ofthis approach is that you can then add sup-
port for other animated model formats without the need to hardcode anything
into your engine.

Within the Peon engine, you will be working with the AnimatedMeshFactory
object, whichis an interface to the different model formats the engine can load and
work with. In this case you will obviously be working with MD3 animated meshes.

The approach of the Peon engine isto first use the AnimatedveshFactory object
to load the data from an MD3 model. The model data is then converted into a
sMD3Model object that can be inserted into the scene graph you have been working
with throughout this book.

INTRODUCTION TO COLLADA

As you might have noticed, one of the struggles when working with assets created
by modeling software is the accompanying effort to find the best way to get the con-
tent in your game engine. In some cases, this can involve using third-party tools to
import the model generated by your software in orderto exportit in a format that
your game engine supports. Each major modeling software application has its own
private format, and they do not always include proper importing or exporting tools
to work with. In most cases, this involves almost forcing you to use a particular
asset creation toolfor your modeling needs.

COLLAborative Design Activity (Collada) is a movement to establish an open
sourced standard for 3D applications and their digital asset format. The popular
content creation companies are participating in this initiative, bringing together
people from Alias, Discreet, and Softimage, among a host of other middleware fo-
cused companies.

Some major hardware vendors such as NVidia, ATI, 3DLabs, and Sony Enter-
tainment are also participating in this collaborative effort. The data format being
designed by Collada is one using XML to describe both models and animation, but
with the intention of supporting shader creation and even real-time physics. Each

Introduction to Models 285

participant in the Collada is responsible for the implementation and support of
their import and exporting tools butare all supposed to handle the same XML data
structure(s). Since the specification is written in XML, you can also modify the for-
mat to your particular engine’s requirements, should the need arise.

CHAPTER EXERCISES

1. Research some other common model file formats and decide whether you
should write an importer for them as well. What are the limitations of the
3DS or MD3 model file formats?

SUMMARY

This chapter provided you with a brief overview on the concept of meshes and
model making. When working on a game project, the decision needs to be made
whether the game is going to be 2D or 3D and how bestto create and load any
model data. Throughout this chapter, you worked with several classes that are re-
sponsible for loading and rendering 3DS model data. You also were introduced to
model animation and working with the MD3 file format into the scene graph of the
Peon engine.

There are quite a number of common special effects that most game program-
mers want or need for their projects. In addition to working with the presentation
of a background in your game world, the next chapter focuses on various effects
that are used in some games today.

Animation and
Special Effects

Chapter Goals

® Introduce and discuss billboarding,
® Introduce and discuss cube environment mapping (that is, skyboxing).
®m Introduce particle systems and point sprites.
® Introduce using simple billboard animation techniques.

pick up the pace and introduce a few more common graphics effects found
in most games today. Although these are fairly simple techniques that can be

dropped into your game, they can add quite a bit of depth to the overall effect of
your scene, which can impress the player even further.

Ys have learned a great deal so far in graphics programming, so itis time to

BILLBOARDING

Billboarding rose to fame several years ago as a way to trick the game player into
seeing a 2D effect or animation rendered in a 3D game world. Billboarding involves
taking a 2D texture (or sprite animation) and rendering it to a quad set of vertices,
which are always facing the camera.

287

288 Game Programming in C++: Start to Finish

For example, a common use for the billboarding technique is to create several
frames of an explosion and load them into texture containers. Then, when the
game signals the need to render an explosion, you calculate the position of the
camera and render the necessary frame of explosion animation. To the viewer, this
simple technique tricks him into perceiving that the explosion is happening in 3D
space, no matterif they try and move the camera around it.

Understanding the View Matrix (Recap)

ON THE CD

To understand how billboarding works, it is essential to understand the composi-
tion of the view matrix within the graphics pipeline. Equation 17.1 shows you a
breakdown of the view matrix, including its vector composition, that you learned
in Chapter 6, “Creating an OpenGL Renderer.”

right _vector.x right _vector.y right _vector.z —(right _vector - eye _ vector)

up _vector.x up _vector.y up _vector.z —(up _ vector - eye _ vector)

—look _vector.x look _vector.y look _vector.z (look _vector - eye _vector)
0 0 0 1 (17.1)

As you cansee, the right, up, and look vectors compose the top 3 x 3 corner of
the view matrix. The final column contains the dot product calculation between the
right, up, and look vectors and the eye point vector. Listing 17.1 details the start of
the /chapter_17/BasicBillboard sample project, which positions the initial camera
orientation.

LISTING 17.1 BasicBillboard Initialization

//first define the starting position of the camera or view matrix
Vector3 vecEye(0.0f, 0.0f, 5.0f); // Eye Position
Vector3 veclLook(0.0f, 0.0f, -1.0f); // Look Vector
Vector3 vecUp(0.0f, 1.0f, 0.0f); // Up Vector
Vector3 vecRight(1.0f, 0.0f, 0.0f); // Right Vector

Extracting the Vectors

To create and work with a billboarding matrix to position your scene’s objects, you
first need to extract the modelview matrix from the OpenGL matrix stack. Then
you align this matrix along either the x, y, or z axis before rendering the texture.
Listing 17.2 details how this is done using the generatemMatrix method of the
Billboard object.

Animation and Special Effects 289

LISTING 17.2 void Billboard: :generateMatrix(float x, float y, float z)

{

float mat[16]; //our current modelview matrix
//take a snapshot of the current modelview matrix
glGetFloatv(GL_MODELVIEW_MATRIX, mat);

float pi = 3.141592654f; //pi value
float theta = -180 * atan2f(mat[8], mat[10]) / pi;
float d = X*X + y*y + z*z; [/magnitude of the vector(x,y,z)
float ct = cosf(PEON_DEGTORAD(theta)) ;

float st = sinf (PEON_DEGTORAD(theta));

// Normalize the incoming vector values which could be placed
// into a Vector3 object
if d>0.)
{

d = 1/d;
X *= d;
y *= d;
Zz *= d;

}

//reset the matrix to the identity
mat[0] = 1; mat[1] = 0; mat[2] = 0; mat[3] = 0;
mat[4] = 0; mat[5] = 1; mat[6] = 0; mat[7] = 0;
mat[8] = 0; mat[9] = 0; mat[10] = 1; mat[11] = 0;
mat[12] = 0; mat[13] = 0; mat[14] = 0; mat[15] = 1;

mat[0] = x*x + ct*(1-x*x) + st*0;
mat[4] = x*y + ct*(0-x*y) + st*-z;
mat[8] = x*z + ct*(0-x*z) + st*y;

mat[1] = y*x + ct*(0-y*x) + st*z;
mat[5] = y*y + ct*(1-y*y) + st*0;
mat[9] = y*z + ct*(0-y*z) + st*-x;

mat[2] = z*x + ct*(0-z*x) + st*-y;
mat[6] = z*y + ct*(0-z*y) + st*x;
mat[10]= z*z + ct*(1-z*z) + st*0;

290 Game Programming in C++: Start to Finish

//apply the calculated matrix to the current stack
glMultMatrixf(mat);

}

This billboarding technique effectively produces a view matrix that is axis-

aligned. The final step in this process is to compute the orientation of the bill-
boarded texture with respect to the updated view matrix that you created in Listing
17.2. Listing 17.3 documents this procedure.

LISTING 17.3 Rendering the Billboard

void Billboard: :onRender()
{

//calculate the billboard matrix around the y-axis
generateMatrix(0.0f, 1.0f, 0.0f);

//now render a simple primitive by enabling alpha-blending
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GREATER, 0);

//set the texture
glBindTexture(GL_TEXTURE_2D, m_pTex->getTex());

//arbitrary polygon rendering mode here. It could be replaced
//with a GL_QUADS or GL_TRIANGLES

glBegin(GL_POLYGON);
{

glTexCoord2f(0.0f, 0.0f);
glvertex3f(-1.0f, -1.0f, 0.0f);

glTexCoord2f(1.0f, 0.0f);
glVertex3f(1.0f, -1.0f, 0.0f);

glTexCoord2f(1.0f, 1.0f);
glVertex3f(1.0f, 1.0f, 0.0f);

glTexCoord2f (0.0f, 1.0f);
glVertex3f(-1.0f, 1.0f, 0.0f);

}

glEnd();

Animation and Special Effects 291

glDisable(GL_BLEND);
glDisable(GL_ALPHA TEST);
}

SKYBOXES (ENVIRONMENT MAPPING)

Another common effect within most games today is the use of a cube environment
map, also known as a skybox. The common practice for creating a skybox is to cre-
ate a cube mesh, which is then placed at the current camera position with its sur-
face normals facing inward. You then texture-map the inward faces ofthis cube
with whatever environment you wantto present to the player: deep space, an un-
dersea view, floating clouds, and so on.

You can use the view matrix composition of vectors presented in Equation
17.1 to create the proper orientation ofthe skybox.

Because you want the background to appear as an infinite distance from the cam-
era, you must remember to disable any depth-buffer writes before rendering and
then re-enable them when you are finished.

The common practice involves the following:

® Obtaining the current view matrix and storing it
® Adjusting the matrix, so that it is centered on the camera’s position
® Rendering the skybox
® Restoring the original view matrix

Listing 17.4 documents how to render the skybox around your camera’s posi-
tion.

LISTING 17.4 Skybox

void Skybox: :onRender()
{

// Bind the BACK texture of the sky map to the
// BACK side of the cube
glBindTexture(GL_TEXTURE_2D, m_oTexture[BACK_FACE]);

292 Game Programming in C++: Start to Finish

// This centers the sky box around position (m_x, m_y, m_z)
m_x = m_x - m_vecDim.x / 2;
m_y=my - m_vecDim.y / 2;
m_z =m_z - m_vecDim.z / 2;

[1]

// Start drawing the side as a QUAD

glBegin(GL_QUADS) ;
// Assign the texture coordinates and vertices for BACK Side
glTexCoord2f (0.0f, 0.0f); glvVertex3f(m_x, m_y, m_z);
glTexCoord2f(0.0f, 1.0f); glVertex3f(m_x, m_y + m_vecDim.y, m_z);
glTexCoord2f(1.0f, 1.0f); glVertex3f(m_x + m_vecDim.x, m_y +

m_vecDim.y, m_z);
glTexCoord2f(1.0f, 0.0f); glVertex3f(m_x + m_vecDim.x, m_y,

m_z);
glEnd();

//Bind the FRONT texture of the sky map to the FRONT

glBindTexture(GL_TEXTURE_2D, m_oTexture[FRONT_FACE]);

// Start drawing the side as a QUAD

glBegin(GL_QUADS) ;
// Assign the texture coordinates and vertices for the FRONT Side
glTexCoord2f(1.0f, 0.0f); glvertex3f(m_x, m_y, m_z + m_vecDim.z);
glTexCoord2f(1.0f, 1.0f); glVertex3f(m_x, m_y + m_vecDim.y, m_z +

m_vecDim.z);
glTexCoord2f(0.0f, 1.0f); glVertex3f(m_x + m_vecDim.x, m_y +

m_vecDim.y, m_z + m_vecDim.z);
glTexCoord2f(0.0f, 0.0f); glVertex3f(m_x + m_vecDim.x, m_y,

m_z + m_vecDim.z);
glEnd();

// Bind the BOTTOM texture of the sky map to the BOTTOM face
glBindTexture (GL_TEXTURE_2D, m_oTexture[BOTTOM_FACE]);

// Start drawing the side as a QUAD

glBegin(GL_QUADS) ;

// Assign the texture coordinates and vertices for the BOTTOM

glTexCoord2f(1.0f, 0.0f); glvertex3f(m_x, m_y, m_z);
glTexCoord2f(1.0f, 1.0f); glVertex3f(m_x, m_y, m_z + m_vecDim.z);
glTexCoord2f(0.0f, 1.0f); glVertex3f(m_x + m_vecDim.x, m_y,

m_z + m_vecDim.z);

Animation and Special Effects 293

glTexCoord2f (0.0f, 0.0f); glVertex3f(m_x + m_vecDim.x, m_y,

mz);
glEnd();

// Bind the TOP texture of the sky map to the TOP

glBindTexture(GL_TEXTURE_2D, m_oTexture[TOP_FACE]);

// Start drawing the side as a QUAD

glBegin (GL_QUADS);

// Assign the texture coordinates and vertices for the TOP Side
glTexCoord2f(1.0f, 1.0f); glvertex3f(m_x, m_y + m_vecDim.y, m_z);
glTexCoord2f(1.0f, 0.0f); glVertex3f(m_x, m_y + m_vecDim.y, m_z +

m_vecDim.z);
glTexCoord2f(0.0f, 0.0f); glVertex3f(m_x + m_vecDim.x, m_y +

m_vecDim.y, m_z + m_vecDim.z);
glTexCoord2f (0.0f, 1.0f); glVertex3f(m_x + m_vecDim.x, m_y +

m_vecDim.y, m_z);
glEnd();

// Bind the LEFT texture of the sky map to the LEFT

glBindTexture(GL_TEXTURE_2D, m_oTexture[LEFT_FACE]);

// Start drawing the side as a QUAD

glBegin (GL_QUADS);

// Assign the texture coordinates and vertices for the LEFT

glTexCoord2f(1.0f, 0.0f); glvVertex3f(m_x, m_y, m_z);
glTexCoord2f(0.0f, 0.0f); glVertex3f(m_x, m_y, m_z + m_vecDim.z);
glTexCoord2f (0.0f, 1.0f); glvVertex3f(m_x, m_y + m_vecDim.y,

m_z + m_vecDim.z);
glTexCoord2f(1.0f, 1.0f); glVertex3f(m_x, m_y + m_vecDim.y, m_z);
glEnd();

// Bind the RIGHT texture of the sky map to the RIGHT face
glBindTexture(GL_TEXTURE_2D, m_oTexture[RIGHT_FACE]);

// Start drawing the side as a QUAD

glBegin(GL_QUADS) ;

// Assign the texture coordinates and vertices for the RIGHT Side
glTexCoord2f(0.0f, 0.0f); glVertex3f(m_x + m_vecDim.x, m_y, m_z);
glTexCoord2f(1.0f, 0.0f); glVertex3f(m_x + m_vecDim.x, m_y,

m_z + m_vecDim.z);

294 Game Programming in C++: Start to Finish

glTexCoord2f(1.0f, 1.0f); glVertex3f(m_x + m_vecDim.x, m_y +

m_vecDim.y, m_z + m_vecDim.z);
glTexCoord2f(0.0f, 1.0f); glVertex3f(m_x + m_vecDim.x, m_y +

m_vecDim.y, m_z);
glEnd();

}

After you have launched the skybox demo, you should be able to use the mouse
to look around the various sides.

OBJECT PICKING/SELECTION

Another common problem among most game programmers is the necessity to map
the current player’s cursor to data within the game world. In other words, how do

you detect whether the player has selected a particular unit within your world? This
is known as picking.

Because of your introduction and expertise using the bounding boxes to detect
collisions between objects within your game world, you can leverage this technique
to detect a collision (thatis, selection) by the mouse. Since each object should have
its own bounding box within your scene, you simply need to cast (or project) a ray
from the current mouse position into the game world. Should this ray collide with
an object, then you can generate some feedback to the player that this particular
unit has been selected.

Ifyour game requires much more precision in object selection, such as the ability to

select an object’s appendage, and so on, then other solutions should be explored.
You could use the ray-to-bounding box collision detection approach to define a
general area and then create more detailed tests after you have determined that the
mouse has selected something within this general region.

Although there are many approaches to this type of algorithm, OpenGL pro-
vides a mechanism for this selection process. Knownas a selection buffer, it can be
used to specify some OpenGL commands to process the scene.

Listing 17.5 provides a mechanism to perform mouse selection.

LISTING 17.5 Mouse Picking

#define SUN 101

#define MOON 102
#define EARTH 103

Animation and Special Effects 295

//snip
//within the event queue, listen for the mouse button click.

Override the
/ /onMouseEvent function
void MainApp::onMouseEvent(SDL_Event* pEvent)

{

if (pEvent->type == SDL_MOUSEBUTTONDOWN)
{

// Here we pass in the cursors X and Y co-ordinates to test an

//object under the mouse.
obj_ID = testObjectID(pEvent->button.x,pEvent->button.y);
sprintf (strTemp, "Position of click and ObjID: (x,y): (%d, %d)

(%d)", pEvent->button.x,pEvent->button.y, obj_ID);
m_strPos = strTemp;

//the obj_ID records what was generated by the hit test.
switch(obj_ID)

{

case MOON:

m_strChosen = "Moon";
break;
case SUN:

m_strChosen = "Sun";
break;
case EARTH:

m_strChosen = "Earth";
break;

int MainApp::testObjectID(int x, int vy)

{

int window_width = peon::EngineCore::getSingleton().
getRenderer()->getWidth();

int window_height = peon::EngineCore::getSingleton().
getRenderer()->getHeight();

//This will hold the sum total of objects clicked on

int objectsFound = 0;
//This array will store our viewport coordinates

296 Game Programming in C++: Start to Finish

int viewportCoords[4] = {0};
//Handle to our selection buffer
unsigned int selectBuffer[32] = {0};

//Setup the selection buffer to accept object ID's
glSelectBuffer (32, selectBuffer);

//Get the current viewport coordinates
glGetIntegerv(GL_VIEWPORT, viewportCoords);

//switch the matrix stack to PROJECTION

glMatrixMode (GL_PROJECTION) ;
//save the current projection matrix

glPushMatrix();
//switch the rendering mode to GL_SELECT. This flag allows
//you to render the objects (like normal), but will not write
//the output to the frame buffer

glRenderMode (GL_SELECT) ;
//reset the projection matrix

glLoadIdentity();

//use the gluPickMatrix method to take a snapshot of the current
//clipping region and convert it to an orthogonal unit cube
//which makes hit testing much easier

gluPickMatrix (x, viewportCoords[3] - vy, 2, 2, viewportCoords);

gluPerspective(45.0f, (float)window_width/(float)window_height,1.0f,100.
of);

glMatrixMode (GL_MODELVIEW) ;

// Go back into our model view matrix

m_bToggle = true;

onRenderWorld();
// Now we render into our selective

//mode to pinpoint clicked objects

m_bToggle = false;

Animation and Special Effects 297

objectsFound = glRenderMode (GL_RENDER); // Return to render mode

// and get the number of objects found

glMatrixMode (GL_PROJECTION) ; // Put our projection
// matrix back to normal.

glPopMatrix(); // Stop effecting our
// projection matrix

glMatrixMode (GL_MODELVIEW) ; // Go back to our normal
// model view matrix

if (objectsFound > 0)
{

unsigned int lowestDepth = selectBuffer[1];

int selectedObject = selectBuffer([3];

for(int i = 1; i < objectsFound; i++)
{

if (selectBuffer[(i * 4) + 1] < lowestDepth)
{

// Set the current lowest depth
lowestDepth = selectBuffer[(i * 4) + 1];

// Set the current object ID

selectedObject = selectBuffer[(i * 4) + 3];

// Return the selected object
return selectedObject;

// didn't click on any objects so return 0

return 0;
}

Finally you need to learn about the rendering method for the selection buffer,
as you need to surround each individual object in the scene with a Name value that
can be queried by OpenGL.

Listing 17.6 details how this is done using the OpenGL name stack.

298 Game Programming in C++: Start to Finish

LISTING 17.6 Using glLoadName

glInitNames();
glPushName(0); //push at least one name on the stack
//for the EARTH object
glLoadName(EARTH);
glPushMatrix();
glLoadIdentity();
glTranslate(0.0f, 0.0f, -10.0f);
//render EARTH

glPopMatrix();
//do the same for the MOON and the SUN

PARTICLE SYSTEMS

Another standard effect among most games todayis the use of particle systems. A
particle system is a way of organizing and managing a system of particles. These
particles can be just about anything you want them to be: smoke, gas, water, fire,
rain, lightning, laser bursts, and snow are just a small list ofthe effects that you can
create and render within a scene. Depending upon the level of realism you are at-
tempting to create, these particles can also be controlled by forces of gravity, other
particles, or perhaps even other affecting agents you want to simulate, such as a
magnetic coil or an unlicensed nuclear accelerator. Listing 17.7 defines the basic
Particle entity with which you will be working.

LISTING 17.7 Particle

namespace peon
{

struct PEONMAIN_API Particle
{

bool m_bActive; // are we active?
Vector3 m_vecCurPos; // Current position of particle
Vector3 m_vecCurVel; // Current velocity of particle
float m_fInitTime; // Time of creation of particle

bs
}

The next task is to create and define a particle emitter object, whichis solely re-
sponsible for acting as the manager to a host of Particle entities. This manager will
then be responsible for creating, updating, rendering, and destroying these parti-
cles. Listing 17.8 outlines the particle emitter.

Animation and Special Effects

LISTING 17.8 ParticleEmitter.h

299

namespace peon
{

[**
* This object is used to encapsulate a tiny particle

system for
* the developer to use with Peon.
*/
class PEONMAIN_API ParticleEmitter
{

public:
/** constructor */
ParticleEmitter();

/** destructor */
~ParticleEmitter();

/** list of currently active particles */
std: :list<Particle*> m_oActivelList;

/** list of not-so-active particles */
std: :list<Particle*> m_oFreelist;

int
float
float

m_iActiveCount;
m_fCurrentTime;
m_flLastUpdate;

SceneTexture* m_pTexture;
bool m_bUsePointSprites;

// Particle Attributes
int
int
float
float
float
Vector3
Vector3
Vector3
float

}s

m_iMaxParticles;
m_iNumToRelease;
m_fReleaseInterval;

m_fLifeCycle;
m_fSize;
m_vecPosition;
m_vecVelocity;
m_vecGravity;
m_fVelocityVvar;

emitter

300 Game Programming in C++: Start to Finish

There are probably many other properties that the pParticleEmitter could
store, but this is a good starting point to learn about particle systems.

For simplicity’s sake, the member variables of the ParticleEmitter are defined
within a public access block in order to trim the amount of methods you would

Na need to create to get/set each member variable.

Updating the Emitter

After you have created a ParticleEmitter instance and defined a location within the
game world to place it, you need to have the container of Particle objects update
itself every frame of the game. You can do this to keep the particle animation
smooth, along with handling how long each particle should last before “dying”
(that is, being marked as inactive). Listing 17.9 demonstrates the updating proce-
dure of the ParticleEmitter.

LISTING 17.9 ParticleEmitter::updateEmitter (float fElapsedTime)

void ParticleEmitter::updateEmitter(float fElapsedTime)

{

Particle *pParticle;
Vector3 vecOldPosition;

m_fCurrentTime += fElapsedTime;

for(std::list<Particle*>::iterator it = m_oActivelist.begin();
it != m_oActivelList.end();
it++)

//get our particle
pParticle = (Particle*)it;

if (pParticle->m_bActive)
{

// Calculate new position
float fTimePassed = m_fCurrentTime - pParticle->m_fInitTime;

Animation and Special Effects 301

if (fTimePassed >= m_fLifeCycle)

{

// Time is up, put the particle back on the free list...
m_oFreeList.push_back(pParticle);

—m_iActiveCount;
}

else
{

// Update particle position and velocity

// Update velocity with respect to Gravity (Constant
// Accelaration)
pParticle->m_vecCurVel += m_vecGravity * fElapsedTime;

// Finally, update position with respect to velocity
vecOldPosition = pParticle->m_vecCurPos;
pParticle->m_vecCurPos += pParticle->m_vecCurVel *

fElpasedTime;

}

}

Rendering the Emitter

Now that the particles contained in the ParticleEmitter object are updating them-
selves, you need to render them within the game world. Listing 17.10 demonstrates
one way to accomplish this where you loop through each Particle object. If it is

marked as active, then render it; otherwise ignore it.

LISTING 17.10 ParticleEmitter::onRender()

void ParticleEmitter::onRender()
{

//first set our particle texture
glBindTexture(GL_TEXTURE_2D, m_pTexture->getTex()).s

302 Game Programming in C++: Start to Finish

Particle* pParticle;
for(std::list<Particle*>::iterator it = m_oActivelList.begin();
it != m_oActivelList.end();
it++)

pParticle = (Particle*)it;
if (pParticle->m_bActive)
{

glPushMatrix();
glLoadIdentity();
glTranslatef(pParticle->m_vecCurPos.x,

pParticle->m_vecCurPos.y, pParticle->m_vecCurPos.z);

glBegin(GL_QUADS) ;

glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);
glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f);
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);

glEnd();
glPopMatrix();

}

Particle System II: Point Sprites

Depending upon the video hardware you have available, you might also be able to
take advantage of the point sprites extension, ARB_point_sprite. Point sprites are
hardware accelerated billboards, which can be textured and are meant for particle
systems, since you do not need to send the quad vertex data to the pipeline. Instead,
you only need to send the vertex position ofthe particle, and the GPU will handle
the necessary math to properly view alignit.

You must first query the hardware to see whether the point sprite functional-
ity is accessible, as with every other OpenGL extension. Listing 17.11 demonstrates
how this is done.

LISTING 17.11 Point Sprite Extension Querying

PFNGLPOINTPARAMETERFARBPROC glPointParameterfARB
PFNGLPOINTPARAMETERFVARBPROC glPointParameterfvARB
m_bUsePointSprites = true;

NULL;

NULL;

Animation and Special Effects

~~
303

//First check the renderer to see if the extension is supported
if (!pRenderer->isExtensionSupported("GL_ARB_point_parameters"))

{

//it's not, so let our internal variable reflect this
m_bUsePointSprites = false;

}

else
{

//Our hardware supports point sprites. Load the proper
//function pointers from the provided vendor DLL

glPointParameterfARB = (PFNGLPOINTPARAMETERFARBPROC)

SDL_GL_GetProcAddress("glPointParameterfARB");

glPointParameterfvARB = (PFNGLPOINTPARAMETERFVARBPROC)

SDL_GL_GetProcAddress("glPointParameterfvARB") ;

//1f there was a problem grabbing these methods from the
//vendor supplied DLL, then disable the use of point sprites
if(!glPointParameterfARB || !glPointParameterfvARB)

{

m_bUsePointSprites = false;

}

Now that you have verified whether the ARB_point_sprite extension exists, you
can modify the render method of the ParticleEmitter objectto take advantage of
this capability. Listing 17.12 provides some additional details.

LISTING 17.12 Modification to ParticleEmitter::render()

void ParticleEmitter::render()
{

// Query for the max point size supported by the hardware
" glGetFloatv(GL_POINT_SIZE_MAX_ARB, &m_fMaxPointSize);

// This is how our point sprite's size will be modified by

// distance from the viewer.
float attenuation[] = { 1.0f, 0.0f, 0.01f };
glPointParameterfvARB (

GL_POINT_DISTANCE_ATTENUATION_ARB,attenuation);

304 Game Programming in C++: Start to Finish

// The alpha of a point is calculated to allow the fading of
//points instead of shrinking them past a defined threshold size.
//The threshold is defined by GL_POINT_FADE_THRESHOLD SIZE ARB
//and is not clamped to the minimum and maximum point sizes.
glPointParameterfARB (GL_POINT_FADE_THRESHOLD SIZE ARB, 60.0f);

glPointParameterfARB(GL_POINT_SIZE MIN_ARB, 1.0f);
glPointParameterfARB(GL_POINT_SIZE_MAX_ARB, m_fMaxPointSize);

/1 Specify point sprite texture coordinate replacement mode for
// each texture unit
glTexEnvf(GL_POINT_SPRITE_ARB, GL_COORD_REPLACE_ARB, GL TRUE);

//enable the point sprite extension
glEnable(GL_POINT_SPRITE_ARB);

glPointSize(m_fSize);

/ [for particle rendering using point sprites, you need to
//use a different primitive: the GL_POINT

glBegin(GL_POINTS);
{

Particle* pParticle;
for(std::list<Particle*>::iterator it = m_oActivelList.begin();
it != m_oActivelList.end();
it++)

pParticle = (Particle*)it;
if (pParticle->m_bActive)
{

//Just supply the vertex to OpenGL. Since it is working
//in GL_POINTS mode, then each vertex will be automatically
//view-aligned by the OpenGL point sprite extensions
glVertex3f(pParticle->m_vecCurPos.x,

pParticle->m_vecCurPos.y,
pParticle->m_vecCurPos.z);

}

glEnd();
//disable the point sprite extension
glDisable(GL_POINT_SPRITE_ARB);
}

Animation and Special Effects 305

BILLBOARD ANIMATION

Another popular tool among game programmers is to create the illusion of bill-

board animation. For most purposes, this is where you take a texture containing the

cells of animation for the billboard object in the scene, such as a character walking,

running, or jumping, and then you display this frame to the player. This same feat

can also be accomplished by loading up individual textures containing the sprite in-

formation, and then proceeding to cycle through them at a specific time interval.

Rendering explosions is a good example of sprite animation and onethat also fits

in with the SuperAsteroidArena project.
The first step in adding the ability to display animation on a billboard surface

is to derive a new instance of the IsGNode entity. As with the other objects you have
created in this chapter, you are doing this to provide you with the ability to insert

the AnimatedBillboard object into your scene graph. Listing 17.13 details the header

file from which you will be working.

LISTING 17.13 AnimatedBillboard.h

namespace peon
{

/** This object is responsible for displaying some frames of animation
* to the player.
xi
class PEONMAIN_API AnimatedBillboard
{

public:
/** std vector container for storing our frame data */
std: :vector<AnimatedFrame*> m_oFrames;

public:
/** Constructor */
AnimatedBillboard();

/** Destructor */
virtual ~AnimatedBillboard();

bs
}

This new entity is a manager object thatis responsible for containing the frames

of textures contained in your animation. The AnimatedBillboard entity exhibits the

same behavior as the Billboard object with the added ability of loading and dis-

playing the frames of animation. These frames can be contained in a small object
called AnimatedFrame. Listing 17.14 provides further details.

306 Game Programming in C++: Start to Finish

LISTING 17.14 AnimatedFrame.h

namespace peon
{

[**
* This object is used for storing a "frame" of animation from a given
* texture
*/class PEONMAIN_API AnimatedFrame
{

Public:
SceneTexture* m_pTexture;
float m_fTime;
public:
/** Constructor */
AnimatedFrame() ;

/** Destructor */
virtual ~AnimatedFrame();
bs
}

The new AnimatedFrame object shown in Listing 17.14 presents a way to handle
the rendering of an animation onto the billboard. You create an instance of the
AnimatedFrame object for each frame of animation. The only other property of this
object that you need to manipulate is the timing variable m_rTimeToDisplay. This
is just a float value that is used when the computer needs to evaluate how long to
present this frame of animation.

Loading New Frames

Now that you have the AnimatedFrame object defined, you will then need to create a
way to contain them. STL is more than capable ofthis task, and so you can use the
STL linked list container to store each frame of your animated sprite. Listing 17.15
demonstrates how this can be accomplished.

LISTING 17.15 Loading New AnimatedFrame Frames

bool loadFrame(const peon::String& strFilename, float fTime)
{

AnimatedFrame *pFrame = new AnimatedFrame();

// create a texture for this frame
pFrame->m_pTexture = peon::EngineCore: :getSingleton().

getRenderer()->loadTexture(strFilename);

Animation and Special Effects

~~
307

// add to vector
pFrame->m_fTime = fTime;

m_oFrames.push_back(pFrame) ;

return true;

Updating Frames

To create theillusion of animation, you need to consider how to time the process
of displaying the texture containing the desired frame. To make things simpler, you
use a variable within the AnimatedFrame interface as a crude timer for judging how

long you should be rendering this particular frame to the player. With each update
cycle of this object, you simply subtract the current frame’s elapsed time from the

AnimatedFrame's time marker. When it has dropped below zero, you update the

linked list container to iterate to the next AnimatedFrame object. Listing 17.16 pro-
vides a code example of this.

LISTING 17.16 AnimatedFrame::onUpdate()

void AnimatedFrame::onUpdate(float elapsed_time)

{

//only bother to update things if we are in fact "running"
//an animation
if(m_bIsRunning)

{

//update the time with our elapsed time
m_fTotalTime += elapsed_time;
//make sure that our current frame is valid.
//Meaning that our time length for the entire
//animation has not elapsed
if (getCurrentFrame() > (int)m_oFrames.size())

{

//halt animation immediately
stopAnimation();

}

You have seen the rendering code before, as you are simply setting the neces-

sary texture handle within the OpenGL pipeline and then rendering a quad at the

sprite’s location in the game world.

308 Game Programming in C++: Start to Finish

CREATING A SHOCKWAVE

A particularly fantastic effect used in some gamesis the proper use of a shockwave.
Within most science fiction movies, a shockwave is usually rendered as a wave of
energy that surges outward whenever a large objectis obliterated. Figure 17.1 pre-
sents the texture used for the shockwave.

FIGURE 17.1 Shockwave
texture.

The basic algorithm that you will learn for manipulating the shockwaveis to
first generate a mesh of triangles that form a ring. When you want to animate the
shockwave outward (or inward), you just need to expand or contract the vertices in
this ring.

Listing 17.17 details the Shockwave header file.

LISTING 17.17 Shockwave Object Header

namespace peon
{

Jew
* This object is used to represent a shockwave effect in space.
*
class PEONMAIN_API Shockwave
{

public:
Shockwave () ;
~Shockwave();

bool m_bIsRunning;
SceneTexture* m_pTexture;
Vector3 m_vecPos;
int m_iNumDivisions;
float m_fThickness;
float m_fLifetime;
float m_fAge;
float m_fExpandRate;

Animation and Special Effects

~~
309

float m_fSize;
float m_fScale;
int m_iNumVerts;

//snip
bs

Initializing the Shockwave

The only slightly difficult task of using a Shockwave object in your game is the

proper way to create one. Listing 17.18 demonstrates how this is done.

LISTING 17.18

bool Shockwave: :load(float fSize, float fThickness, int
iNumDivisions,

float fExpandRate, float fLifetime)

m_iNumDivisions = iNumDivisions;
m_fSize = fSize;
m_fThickness = fThickness;
m_fExpandRate = fExpandRate;
m_fLifetime = fLifetime;

//we are rendering the primitives using the Quad primitive type (4

//verts per square). If we were to switch to GL_TRIANGLES, then

//change this value to 6 since it takes 6 vertices for one square
m_iNumVerts = iNumDivisions * 4;

m_pParticles = new ParticleVtx[m_iNumVerts];

m_fAge = 0.0f;
m_fScale = 0.0f;

// calculate number of vertices
float fStep = 360.0f / iNumDivisions;

int i = 0;
for (float q=0.0f; q < 360.0f; q+= fStep)
{

// calculate x1,y1, x2,y2, x3,y3 and x4,y4 points
float x1 = m_fSize * cosf (PEON_DEGTORAD(Q)) ;

310 Game Programming in C++: Start to Finish

float y1 = m_fSize * sinf(PEON_DEGTORAD(q));
float x2 = (m_fSize-m_fThickness) * cosf (PEON_DEGTORAD(q)) ;

float y2 = (m_fSize-m_fThickness) * sinf (PEON_DEGTORAD(q));

float x3 = m_fSize * cosf (PEON_DEGTORAD (q+fStep)) ;float y3 = m_fSize * sinf (PEON_DEGTORAD (q+fStep));
float x4 = (m_fSize-m_fThickness) * cosf (PEON_DEGTORAD(q+fStep));
float y4 = (m_fSize-m_fThickness) * sinf(PEON_DEGTORAD(q+fStep));

m_pParticles[i] = ParticleVix(x2, y2, <1.0%;:0.0f,; 040f, 1.0f J

255,
255, 255, 255, 0.0f, 1.0f);

i++;

m_pParticles[i] = ParticleVtx(x1, y1, -1.0f, 0.0f, 0::0f,, "1.0f,
255,

255, 255, 255, 0.0f, 0.0f);

1H

m_pParticles[i] = ParticleVtx(x3, y3, -1.0f, 0.0f, 0.0f, 1.0f,
255,

255, 255, 255, 1.0f, 0.0f);

t+;

m_pParticles[i] = ParticleVtx(x4, y4, -1.0f, 0.0f, 0.0f, 1.0f,
255,

255, 255, 255, 1.0f, 1.0f);

Teds

m_bIsRunning = false;

return true;

Updating the Shockwave

Most of the difficult work was done during the initialization of the Shockwave ob-
ject. When you want to update the explosion ring, you only need to loop through
each vertex in the shockwave mesh. As each vertex expands outward, you scale

Animation and Special Effects

~~
311

each vertex while also adjusting the alpha channel value ofthe ring to slowly fadeit
over time. Listing 17.19 details how this is done.

LISTING 17.19 Updating the Shockwave

void Shockwave: :onUpdate(float fElapsedTime)

{

if (!m_bIsRunning)
return;

m_fScale += m_fExpandRate * fElapsedTime;
m_fAge += fElapsedTime;
int iAlpha = 0;
iAlpha = (int) (2556.0f - (255.0f * (m_fAge/m_fLifetime)));

for(int i = 0; i < m_iNumVerts; i+)
{

m_pParticles[i].m_a = iAlpha;
}

if (m_fAge > m_fLifetime) stop();

Rendering the Shockwave

The algorithm for rendering the shockwave ring is simple as well. You just need to

cycle through each vertex of the ring and renderit with the shockwave texture. Take

note that you are using the alpha channel color information to properly fade out
the rings of the shockwave as it progresses through space. Listing 17.20 details how

this is accomplished.

LISTING 17.20 Shockwave Render Method

void Shockwave: :onRender()
{

if (!m_bIsRunning)
return;

glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

312 Game Programming in C++: Start to Finish

glBindTexture(GL_TEXTURE_2D, m_pTexture->getTex());

glPushMatrix();
glLoadIdentity();
glTranslatef (m_vecPos.x,. mvecPos.y, m_vecPos.z);
glScalef(m_fScale, 1.0f, m_fScale Yi

glBegin(GL_QUADS);

ParticleVtx* p;
for(int i = 0; i < m_iNumVerts; i++)
{

p = &m_pParticles[i];

glColor4b(p->m_r, p->m_g, p->m_b, p->m_a);

glTexCoord2f(p->m_tu, p->m_tv);
gIlNormal3f(p->m_nx, p->m_ny, p->m_nz);
glvertex3f(p->m_x, p->m_y, p->m_z);

glEnd();
glPopMatrix();
glDisable(GL_BLEND);
glEnable(GL_DEPTH_TEST);

TAKING A SCREEN SHOT

In most games today there is almost nothing as useful as the ability to capture and
store screen data during the runtime of the game. Not only doesit allow the player
to rapidly capture moments in the game they would want to preserve or send to
their friends, but it also provides you with another helpful support mechanism
tool. Listing 17.21 documents one way to implement preserving the current state of
the OpenGL context into a BMP image file.

LISTING

Animation and Special Effects 313

17.21 Storing the current scene into a BMP

>hl;

void SceneRenderer::getScreenCapture()
{

SDL_Surface *temp;
unsigned char *pixels;
int i;

//use a static variable as a counter for naming
//the file. You could always just keep calling the saved

//screenshot the same name, but what if players wanted

//to put together a slide-show to show off your game?

static int file_count = 0;

TCHAR strFileName[MAX_PATH];
sprintf (strFileName, "screen_capture_%d.bmp", file count);

//Create an SDL software surface matching the OpenGL context
/ surface
temp = SDL_CreateRGBSurface(SDL_SWSURFACE, m_pOGLSurface->w,

m_pOGLSurface->h, 24,

#if SDL_BYTEORDER == SDL_LIL_ENDIAN
0x000000FF, 0x0000FF00, O0xO00FF0000, 0

#else
0x00FF0000, 0x0000FF00, 0x000000FF, O

#endif
)s

if (temp == NULL)

return;

pixels = new unsigned char[3 * m_pOGLSurface->w * m_pOGLSurface-

if (pixels == NULL)

{

SDL_FreeSurface (temp);
return;

314 Game Programming in C++: Start to Finish

//use glReadPixels to blast the pixels from OpenGL into the newly
//created array
glReadPixels(0, 0, m_pOGLSurface->w, m_pOGLSurface->h, GL_RGB,

GL_UNSIGNED_BYTE, pixels);

//1oop through the array to dump everything into our SDL

/ I surface
for (i=0; i<m_pOGLSurface->h; i++)
memcpy (((char *) temp->pixels) + temp->pitch * i,

pixels + 3*m_pOGLSurface->w * (m_pOGLSurface->h-i-1),
m_pOGLSurface->w*3) ;

//We are done with the pixel array. Clean it up
PEON_DELETE_ARRAY(pixels);

//Use some SDL "stock" functions to save the bitmap and
//free the associated surface
SDL_SaveBMP (temp, strFileName);
SDL_FreeSurface (temp);

file_count++;

CHAPTER EXERCISES

1.

2.

Experiment with the AnimatedBillboard object and see whether you can
derive it from the Billboard entity.
Although point sprites are an eye-pleasing addition to your particle emit-
ter, they can cause some performance drain on some hardware even when
the extension is supported. Be sure to have a backup in place should the
hardware not support the extension, or only support the extension at a
minimal level.

. Experiment with new properties for each Particle object used in the emit-
ter. One trick is to define two colors for each Particle. One color is used
when the Particle is first emitted and is slowly interpolated with the sec-
ond Finish color.

Animation and Special Effects

~~
315

SUMMARY

This chapter covered a lot of ground with respect to a small sample of the common
effects and techniques seen in many games today. You started off by learning how
to create and use billboards within your game. You then discussed the environment
mapping technique of presenting the background to the player, whereby you wrap
the sides of the camera’s view space with some textures. You also learned how to
create a simple particle system that also has the ability to support the point sprite
extension available in OpenGL.

Of the recent developments in graphics programming, none are more signifi-
cant to games developers than the introduction and use of vertex and fragment pro-
grams. Developedto fit within the model of the programmable pipeline, the shader
technology allows you to surpass some of the shortcomings of the fixed function
graphics pipeline. You will learn more of this in the next chapter.

Introduction to the OpenGL
Shading Language (GLSL)

Chapter Goals
®m Describe how the programmable pipeline alters the Fixed Function

Pipeline model.
® Introduce and describe basic pixel and fragment shader technologies.

Introduce using the GLSL library.
B® Describe and document the process of implementing fragment and

vertex programs in your applications.
® Add GLSL support to Peon.

Fixed Function Pipeline system has been the process used since the intro-
duction of the graphics pipeline approach of 3D technology. In the early

days of 3D programming, the FFP was perfectly suited for the applications that
were developed at the time.

The FFP model can run into complications and limitations, however, as hard-
ware vendors continually attempt to add more features accessible to the graphics
programmer. There is also the added complexity of ensuring proper stability and
performance with the existing OpenGL state machine. As a result of these limita-
tions, the combination of academic research and hardware vendor participation
brought aboutan alteration to the pipeline design to also allow OpenGL to inject
pre-transformed and lit vertices directly into the last stage of the FFP.

A
s you learned in Chapter 5, “Graphics Programming Mathematics,” the

317

318 Game Programming in C++: Start to Finish

With many recent breakthroughs in video hardware technology, you are able to
take advantage of the hardware’s own CPU, known as the GPU or Graphics Pro-
cessing Unit, to crunch through scene vertices at incredible rates as well as create
your own imaginative effects.

SOME HISTORY OF SHADING LANGUAGES

Beginning with the earlier DirectX8.0 version of the SDK by Microsoft, the vertex
and pixel shader implementations needed to be coded in straight assembly language
and allowed up to 128 instructionsto be executed on a single vertex. Although this
allowed the shaders to move through the programmable pipeline as quickly as
possible, it was highly error-prone. Bugs were often difficult to track down, notto
mention that the only shading capability OpenGL hardware had was through some
vendor-specific extensions. Another difficulty surrounding the earlier shader im-
plementations was that it was very difficult to see the results of your shaders without
having to recompile your code base.

Listing 18.1 demonstrates an older VS1.0 vertex shader script which highlights
this point nicely.

LISTING 18.1 An Early VS1.0 Vertex Shader for DirectX8.0

vs, 1.0
dp4 oPos.x , vO , cO // Transform the x component
dp4 oPos.y , vO , ci // Transform the y component
dp4 oPos.z , vO , c2 // Transform the z component
dp4 oPos.w , vO , c3 // Transform the w component

mov obD0 , v5 // Apply the original color specified

The DirectX team were well aware of these difficulties around shader pro-
gramming, and so with the recent release of the DirectX9 SDK, Microsoft intro-
duced the High Level Shading Language (HLSL), which created a higher level
approach to programming shaders. No longer did the developer need to create and
debug pages of assembler; the HLSL allowed for a cleaner approach to program-
ming the GPU. Listing 18.2 provides a snapshot of some HLSL code from the SDK,
which is far more readable and faster to debug.

LISTING 18.2 BasicHLSL.fx

// Transform the position from object space to homogeneous
// projection space
Output.Position = mul(vAnimatedPos, g_mWorldViewProjection);

Cg

Introduction to the OpenGL Shading Language (GLSL) 319

// Transform the normal from object space to world space
vNormalWorldSpace = normalize (mul(vNormal, (float3x3)g_mWorld));
// normal (world space)

// Compute simple directional lighting equation
float3 vTotallLightDiffuse = float3(0,0,0);
for(int i=0; i<nNumLights; i++)

vTotalLightDiffuse += g_LightDiffuse[i] *

max (0,dot (vNormalWorldSpace, g_LightDir[i]));

Output.Diffuse.rgb = g MaterialDiffuseColor * vTotalLightDiffuse +

g_MaterialAmbientColor * g_LightAmbient;
1.0f3Output.Diffuse.a

Output.TextureUV = vTexCoord0;

When you could be working with shaders reaching 40-50 instructions, this
code clarity can really benefit your application.

NVidia has also developed a specification and implementation of its own shading
language known as Cg, or Cfor Graphics. The purpose ofthis API is to abstract ver-
tex and pixel shader technology one level higher, allowing you to run them in both
Direct3D and OpenGL implementations. Additionally, you do not need to create
different shader module files for each different specification of the pixel and vertex
shader. Although the first version of Cg really only ran on NVidia video hardware,
the company has put a lot of effort and resources into making the implementation
compatible with ATI-based cards. It gives you an ample introduction to creating
and using shader technology interfaces, while also providing you with the ability to
render your modules using either OpenGL or Direct3D.

The OpenGL Shading Language (GLSL)

The OpenGL ARB released the programmable pipeline specifications of its own for
the OpenGL in the 1.5 specification. It allowed the OpenGL developer to access
vertex shaders (known as vertex programs) and pixel shaders (known as fragment
programs) through the extension mechanism using a language syntax and con-
struction similar to that of assembler. It was not until the OpenGL 2.0 specification,
however, that these vertex and fragment program extensions were officially re-
named to be incorporated into the OpenGL Shading Language (GLSL). The GLSL
is a higher level approach to developing shaders for OpenGL rendering using a

320 Game Programming in C++: Start to Finish

syntax and language construction similar to C/C++. As with the HLSL from Mi-
crosoft, this makes shader programming far easier to create and debug. Listing 18.3
demonstrates some sample GLSL vertex program script.

LISTING 18.3 Sample Vertex Program Script

// entry point for the vertex shader program
void main(void)

{

// calculate the resultant vertex position
gl Position = gl ModelViewProjectionMatrix * glVertex;

// assign the texture coordinate tu the texture information
gl _TexCoord[0] = gl_MultiTexCoordO;
//assign the front facing color of this vertex to the
//diffuse color that we know about
gl_FrontColor = gl_Color;

}

With the OpenGL ARB and other hardware vendors such as 3Dlabs, ATI, and
NVidia working hard to continually improve and provide support for the GLSL in
their hardware drivers, this book focuses on using this API for shader programming
and effects.

The Vertex Processor

The vertex processor encapsulates your vertex shaders. The inputfor a vertex shader
is very flexible. The specification allows you to input vertex data such as the position,
normals, texture, and color information, among others. Matrices and lighting/ma-
terial settings can be passed into the Vertex processor as well. Although you do not
need to handle every input in your shader code, you need to remember that you can-
not return vertices that need to pass back through the FFP to undergo any additional
transform or lighting operations. The whole point of the GLSL design prevents this
from happening.

Each vertex shaderis also executed per vertex in the scene. There is no way to
determine how many vertices are left, for example, but the vertex shader does have
access to the OpenGL state mechanism. At a bare minimum, the vertex shaderis re-
sponsible for outputting one variable, g1Position, which is usually the transformed
position of the vertex given the modelview and projection matrices. There are also
far fewer vertices that pass through the programmable pipeline than fragment pro-
grams, so this can be one area of optimization should you run into some scene
troubles. The vertex shader also has access to the scene geometry.

Introduction to the OpenGL Shading Language (GLSL) 321

The Fragment Processor

The fragment processor (also known as the pixel shader) is responsible for pro-
cessing inputs such as any pixel lighting operation or calculating color or texture
coordinates per pixel, and so on. Similarly to the vertex processor, the fragment
processor replaces all of the Fixed Function Pipeline’s functionality; therefore, you
must develop all of the code for processing each fragment. Texture data for a frag-
ment cannot be written but are expensive read-only calls. Any depth or stencil
buffer operations are performed after the fragment is injected back into the
pipeline. The z-buffer does perform some early culling calculations before the frag-
ment enters the processor, however, in order to drop fragments thatfail the test.

Coo If the computation requires extensive calculations, then you should probably im-
wc plement it as a fragment program. If the shader requires more geometric or graphic

calculations, then try to keep it a vertex program.

GLSL Data Types

Under the GLSL, there are several data types at your disposal, as shown in Table 18.1.

TABLE 18.1 Data Types

Data Type Description

int Integer data type
float Float data type
bool Boolean data type
vec2, vec3, and vecd

ivec2, ivec3, and ivec4

bvec2, bvec3, and bvec4

mat2, mat3, and mat4

Sampler1D, sampler2D,
and sampler3D

samplerCube

SampleriDShadow,
sampler2DShadow

Two-, three-, and four-dimensional float vector

Two-, three- and four-dimensional integer
vector

Two-, three-, and four-dimensional Boolean
vector

2x 2,3 x3, and 4 x 4 dimensional float matrices

One-, two-, and three-dimensional
texture handles

Cubemap texture handle
One- and two-dimensional depth
component texture handles

322 Game Programming in C++: Start to Finish

Shader Inputs and Outputs

When working with GLSL shaders, you have access to three types of variables in
your shader programs: uniform, attribute, and varying. All three of these input and
output types must be declared globally in your shader programs; it is not permissi-
ble to declare any ofthese within shader functions.

Uniform variable types are values that are static and do not change during a
rendering process. An example ofthis would be the position of the light source.
Uniforms are a read-only variable type and are available in both vertex and frag-
ment shader programs.

Attribute variables are only available within the vertex shader program. They
are dynamic input variables that can change with each vertex thatis being processed
by the shader. The vertex position or normal vector is a good example of an at-
tribute variable. This type ofvariableis read-only as well.

Varying variable types represent data that is passed from the output ofthe ver-
tex shader to the input of the fragment program. Within the vertex shader, these
types of variables are both read and write. In the fragment shader program, how-
ever, these variable types are read-only.

Built-In Types
The GLSL specification provides you with some built-in attributes—uniform and
varying types that are accessible from your shader programs. There is a complete
listing within the specification, but some of the more common types are listed in
Table 18.2.

TABLE 18.2 Built-In Types

Attribute Data Type Description

gl Vertex 4D vector type representing the vertex position

gl_Normal 3D vector type representing the vertex normal

gl_Color 4D vector type representing the vertex diffuse
color

gl_MultiTexCoordo— 4D vector representing the texture coordinates
gl_MultiTexCoord7 for texture units zero to seven

Introduction to the OpenGL Shading Language (GLSL) 323

Be sure to check with the GLSL specification for other built-in attribute data types
at your disposal.

Table 18.3 lists some of the built-in uniform types available from your shader
programs.

TABLE 18.3 Built-In Uniform Data Types

Uniform Data Type Description

gl_ModelViewMatrix 4 x 4 matrix representing the model-view
matrix

gl_ModelViewProjectionMatrix 4 x4 matrix representing the model-view-
projection matrix

gl_ProjectionMatrix 4 x4 matrix representing the projection
matrix

Co Besure to check with the GLSL specification for other built-in uniform data types
ON THE CD at your disposal.

OpenGL Shading Language Syntax
GLSL has similar syntax to that of C/C++ with a few minor differences. Always
browse the latest copy ofthe specification to familiarize yourself with any language
restrictions. The language is also 100 percent type safe, which means that you are
unable to perform an assignment of a float to an int variable, for example. Listing
18.4 provides clarification.

LISTING 18.4 Type-Safe Clarification

/* illegal since the value assigned is an int not a float */
float current_color = 1;

/* this is legal as the value assigned is the same as the
declaration */
float next_color = 0.5;

324 Game Programming in C++: Start to Finish

When working with either the vector or matrix data types, they can only be filled
with data during construction ofthe variable. Listing 18.5 provides more detail.

LISTING 18.5 Vector/Matrix Declarations

/* the following is a legal declaration for a vector */
vec3 explosion_vector = vec3(0.0, 1.0, 0.5);

/* the following is a legal declaration for a mat3 */
mat3 explosion_mat = mat3(1.0, 0.0, 0.0,

0.0, 1:0,.0.0,
040. 050; 1.0 })

The same rules apply to mathematical operations using each of these data

types. For example, vector multiplication is component-wise, which follows the
normal convention of multiplying two vectors. Listing 18.6 provides some sample
operations.

LISTING 18.6 Sample Operations

vec3 vec_one = vec3(1.0, 0.0, 0.5)
vec3 vec_two = vec3(0.0, 1.0, 4.0)
/* the following operation will return a vec3 of (0.0,0.0,2.0)*/
vec3 vec_three = vec_one * vec_two

/* The following matrix times vector multiplication will produce a

vector*/
gl Position = gl_modelViewProjectionMatrix * gl Vertex

There are some standard built-in operations that should be used. Table 18.4

provides a sampling of these operations.

TABLE 18.4 Built-In Operations

Function
:

Description

Length Determines the length of a vector

Distance Determines the distance between two vectors

Dot The dot product operation

Cross
|

The cross-product operation

Normalize Normalize a vector

Introduction to the OpenGL Shading Language (GLSL) 325

€oH Besure to check with the GLSL specification for other built-in operations at yourume disposal.

Checking for Shader Support

By querying the OpenGL Extension mechanism that you learned about in Chap-
ter 7, “More OpenGL Techniques,” it is a trivial task to verify whether your
OpenGL device is capable of shader processing. You just need to ensure that the
GL_ARB_vertex_shader, GL_ARB_fragment_shader, GL_ARB_shader objects, and the
GL_ARB_shading_language_100 extensions are supported as demonstrated in Listing
18.7.

LISTING 18.7 Shader Support Using Extension Querying

// GL_ARB_shader_objects
//Since we're working with GLSL through the extension mechanism,
//you will need to store some function pointers. (You can cut
//and copy these directly from the glext.h header!)
PFNGLCREATEPROGRAMOBJECTARBPROC glCreateProgramObjectARB = NULL;
PFNGLDELETEOBJECTARBPROC glDeleteObjectARB = NULL;
PFNGLUSEPROGRAMOBJECTARBPROC glUseProgramObjectARB = NULL;
PFNGLCREATESHADEROBJECTARBPROC glCreateShaderObjectARB = NULL;

PFNGLSHADERSOURCEARBPROC glShaderSourceARB = NULL;
PFNGLCOMPILESHADERARBPROC glCompileShaderARB = NULL;
PFNGLGETOBJECTPARAMETERIVARBPROC glGetObjectParameterivARB = NULL;
PFNGLATTACHOBJECTARBPROC glAttachObjectARB = NULL;
PFNGLGETINFOLOGARBPROC glGetInfoLogARB = NULL;
PFNGLLINKPROGRAMARBPROC glLinkProgramARB = NULL;
PFNGLGETUNIFORMLOCATIONARBPROC glGetUniformLocationARB = NULL;
PFNGLUNIFORM4FARBPROC glUniform4fARB = NULL;
PFNGLUNIFORM1IARBPROC glUniformiiARB = NULL;

//check if the proper shader extension is supported. There are
//many to choose from, but a good starting point is the
/ /GL_ARB_shading_language_100 string
if (!pRenderer->isExtensionSupported("GL_ARB_shading_language 100")

//this hardware doesn't support shader tech.
//usually you would provide a workaround
return false;

telse
{

326 Game Programming in C++: Start to Finish

//The video hardware supports the GLSL extensions. There
//are a lot of function pointers to grab here, so it might
//not be a bad idea to stuff them into an object that
//automatically loads with the SceneRenderer that you
//never have to worry about again.
glCreateProgramObjectARB = (PFNGLCREATEPROGRAMOBJECTARBPROC)

SDL_GL_GetProcAddress("glCreateProgramObjectARB");

glDeleteObjectARB = (PFNGLDELETEOBJECTARBPROC)

SDL_GL_GetProcAddress("glDeleteObjectARB");

glUseProgramObjectARB = (PFNGLUSEPROGRAMOBJECTARBPROC)

SDL_GL_GetProcAddress("glUseProgramObjectARB");

glCreateShaderObjectARB = (PFNGLCREATESHADEROBJECTARBPROC)

SDL_GL_GetProcAddress("glCreateShaderObjectARB");

glShaderSourceARB = (PFNGLSHADERSOURCEARBPROC)

SDL_GL_GetProcAddress("glShaderSourceARB");

glCompileShaderARB = (PFNGLCOMPILESHADERARBPROC)

SDL_GL_GetProcAddress("glCompileShaderARB");

glGetObjectParameterivARB = (PFNGLGETOBJECTPARAMETERIVARBPROC)

SDL_GL_GetProcAddress("glGetObjectParameterivARB");

glAttachObjectARB = (PFNGLATTACHOBJECTARBPROC)

SDL_GL_GetProcAddress("glAttachObjectARB");

glGetInfolLogARB = (PFNGLGETINFOLOGARBPROC)

SDL_GL_GetProcAddress("glGetInfoLogARB");

glLinkProgramARB = (PFNGLLINKPROGRAMARBPROC)

SDL_GL_GetProcAddress("glLinkProgramARB") ;

glGetUniformLocationARB = (PFNGLGETUNIFORMLOCATIONARBPROC)

SDL_GL_GetProcAddress("glGetUniformLocationARB") ;

glUniform4fARB = (PFNGLUNIFORM4FARBPROC)

SDL_GL_GetProcAddress("gluniform4fARB") ;
glUniform1iARB = (PFNGLUNIFORM1IARBPROC)

SDL_GL_GetProcAddress("glUniformi1iARB");

Introduction to the OpenGL Shading Language (GLSL) 327

return true;

Your shader programs are created and written similarly to the C language and
are then compiled and linked into your application by the OpenGL context before
they can be used in a scene.

€or While you can create as many shaders as you want, every shader program must
NEC have one and only one main function defined for a vertex and fragment shader.

When using vertex and fragment programs in OpenGL, there are three steps
before you can begin rendering your shaders:

1. Loading the shader source into a shader object
2. Compiling the shader object
3. Linking the shader to part of the rendering pipeline

Loading the Shader Source

There are a few procedures to follow to load and use a shader container object that
encapsulates either the vertex or fragment shader code.Listing 18.8 provides an ex-
ample of preparing a shader for use.

LISTING 18.8 Loading a Shader

GLhandleARB hVertexShader; //the handle object to your shader
char strLog[4096]; //string to contain any log output
const char *vertexShaderStrings[1];

//load the shader object container specifying you are
//using it to contain vertex shader code
hVertexShader = glCreateShaderObjectARB (GL_VERTEX_SHADER_ARB);

//read in the contents of the shader file itself..simply dump
//the string contents of the file into a pointer
unsigned char *vertexShaderAssembly =

readShaderFile("vertex_shader.vert");

vertexShaderStrings[0] = (char*)vertexShaderAssembly;

glShaderSourceARB(hVertexShader, 1, vertexShaderStrings, NULL);
glCompileShaderARB(hVertexShader);

328 Game Programming in C++: Start to Finish

delete vertexShaderAssembly;

//check the log status of the vertex shader handle for any
//errors during the compilation process
glGetObjectParameterivARB(hVertexShader,

GL_OBJECT_COMPILE_STATUS_ARB,

&bVertCompiled);
if(!bVertCompiled)

{

//use glGetInfoLog to grab the log contents
glGetInfoLogARB(g_vertexShader, sizeof(strLog), NULL, strLog);

//spit it out to the debugger
OutputDebugString(strLog);

return false;

Creating a Shader Program
The shader program encapsulates one or more shader objects within the OpenGL
context. You can have more than one program accessible during the runtime of
your application and are allowed to switch between them at your leisure. Listing
18.9 demonstrates how to load a shader program, which then attaches the compiled
vertex shader object you loaded in Listing 18.8.

LISTING 18.9 Shader Program

programObj = glCreateProgramObjectARB();
glAttachObjectARB(programObj, hVertexShader);

//1link the program which means the shaders must be compiled -

//by this point
glLinkProgramARB(programObj);
glGetObjectParameterivARB(programObj,

GL_OBJECT_LINK STATUS ARB,
&bLinked);

if(!bLinked)

{

glGetInfoLogARB(programObj, sizeof(strLog), NULL, strLog);

OutputDebugString(strLog);
return false;

Introduction to the OpenGL Shading Language (GLSL)

~~
329

//finally use this program object
glUseProgramObjectARB(programObj);

The Shader InfolLog

a
ON THE CD

Although there is a continuing effort to release shading tools that include debug-
ging capabilities, there is no equivalent of something as handy as a printf statement
within shader programs. You are not left completely in the dark for shader debug-
ging, however, as you do have the capabilities of the InfoLog object to record the
status of certain shader commands.

Be warned—there is no official specification for the InfoLog format, so different
vendor OpenGL runtimes might generate different logging messages.

You used the InfoLog in Listings 18.8 and 18.9, but another example is demon-
strated in Listing 18.10.

LISTING 18.10 Another InfoLog Example

//This method is responsible for printing the contents of
//the InfolLog
void printInfoLog(GLhandleARB obj)
{

int infologlLength
int charsWritten
char *infolog;

0;
0;

glGetObjectParameterivARB (obj,
GL_OBJECT_INFO_LOG_LENGTH_ARB,
&infologlLength);

if (infologLength > 0)tinfoLog = (char *)malloc(infologlLength);
glGetInfolLogARB (obj, infologlLength,

&charsWritten, infolLog);
printf ("%s\n",infolog);
free(infolLog);

}

330 Game Programming in C++: Start to Finish

Uniform and Attribute Variables

Currently, OpenGL shaders have access to the internal OpenGL state. For example,
if you were to set some lighting parameters within OpenGL before calling your
shader, you can then reference these same lighting parameters within the shader
module. Although it is possible to use this technique as a rudimentary form of pa-
rameter passing, it is not very intuitive and can be quite painful.

Instead, OpenGL allows you to specify some values within your application,
which can communicate directly with the shader. The uniform variable specifier
was created for this very purpose. The uniform value property is read-only andisthe same across every vertex that passes through the shader. Listing 18.11 demon-
strates this.

LISTING 18.11 Sample Vertex Shader Script

//This is defined within the vertex shader script itself
/ /BasicShader.vert

//declare a uniform value to contain your scaling factor
uniform float fScale;
void main()
{

//assign the current vertex to the a object
vec4 a = gl_Vertex;
a.x = a.x * 0.5;
a.y=a.y *0.5;
a.z a.z * fScale; //multiply the a scaling factor with fScale

In

//the final position of this vertex is the modelview matrix
//multiplied with the projection matrix and the a vector
gl_Position = gl_ModelViewProjectionMatrix * a;

}

You are able to control the value of the parameter used in the shader inside
your own application with the gluniformf*ARB() family of methods.

Contrary to the Uniform variable, the Attribute variables are used to set indi-
vidual settings for each vertex that passes through the pipeline. Within the vertex
shader, however, the Attribute variable is read-only and cannot be modified.

Rendering with Shaders

Now that you finally have your vertex and fragment shader programs loaded and
ready for use,it is a trivial matter to enable them during the rendering process. You

Introduction to the OpenGL Shading Language (GLSL)

~~
331

simply need to surround any of your glBegin/glEnd pair blocks with the pair of
glUseProgramObjectARB/glUseProgramObjectARB() commands. Listing 18.12 demon-

strates how this can be implemented for your application.

LISTING 18.12 Using Shaders

glUseProgramObjectARB(m_programObj);

//bind the texture to texture unit 0 for the shader program
glUniform1iARB(m_location_testTexture, 0);

//use interleaved arrays to demonstrate yet another way

//to render a quad
glinterleavedArrays(GL_T2F_C3F_V3F, 0, m_quadVertices);
glDrawArrays(GL_QUADS, 0, 4);

//finished. Unlink the shader program
glUseProgramObjectARB(NULL);

Shader Object Cleanup

When you are finished working with the shader objects, you need to deallocate any
remaining objects as shown in Listing 18.13.

LISTING 18.13 Shader Garbage Collection

glDeleteObjectARB(m_hVertexShader);
glDeleteObjectARB(m_programObj);

SHADER VALIDATION USING GLSLVALIDATE

Before you begin to debug any problems with a GLSL vertex or fragment program,
it can help tremendously to first ensure that your shaders are conforming to the
GLSL standards outlined by the ARB. To this end, 3Dlabs has created and released
the GLSLvalidate tool, which will process your shader scripts to validate them.

<>» Available on the CD-ROM, you simply launch the binary to install the application.
mee After you start the application, you are able to load any vertex and fragment script

to ensureits validity. Figure 18.1 demonstrates some sample output.

332 Game Programming in C++: Start to Finish

esi

ie

Ase

LR

GLSL Syntax Validator
Fle Heb iy LEAs

Parsing vertex shader "sample. vert’... i)
Success.

FIGURE 18.1 GLSLvalidate output.

CHAPTER EXERCISES

1. In some game engines today, the graphics pipelines are completely shader
driven in order to render the game world. Discuss any tradeoffs between
the Fixed Function Pipeline and the programmable pipeline and possible
support issues this might entail.

2. Create another vertex and fragment shader within the SimpleShader sam-
ple used in this chapter, along with another mesh in the scene. Designate a
key to flip back and forth between shader objects for each mesh during
program execution. This demonstrates how quick and easy shaders are for
“skinning” the same vertices with different shader effects.

3. Create another mesh within the scene in the program developed in the
previous exercise (to bring your total to three meshes). Now within the ap-
plication, render one mesh with one shader object, another mesh with the
second shader object, and the last mesh in the scene without any vertex or
shaders defined atall.

Introduction to the OpenGL Shading Language (GLSL)

~~
333

SUMMARY

Although itisstill a relatively new field of graphics programming, pixel and vertex
shader technology is rapidly becoming a new wave of development power for the

games programmer. Although there are a myriad of shading technologies available
to the developer, you were introduced to the OpenGL Shading Language, a higher
level shader language added to the OpenGL 2.0 specification. You learned how to
create, load, and manipulate the shader objects to bypass the Fixed Function
Pipeline with the goal of creating your own transform and lighting operations. In
the next chapter, you will take a look at Lua, which is a scripting language capable
of extending your game and engine design.

Introduction to Scripting

Chapter Goals

® Introduce scripting.
m Discuss Lua.

ating the illusion of a near-interactive environment to enhance the player’s
experience. Often this illusion is in the form of scripted events that

heighten the player’s perception of involvement with the game world. This involves
a delicate balance of making the player feel a part of the action, while at the same
time avoiding too much scripting, which only serves to alienate the player by mak-
ing him feel that he has no virtual freedom in the game world.

O ne aspect of game programming that is becoming extremely popular is cre-

INTRODUCTION TO SCRIPTING

The concept of scripting elements within the game world has been around for sev-
eral years and helps stretch the usefulness and life span of both the game engine and

any game built upon the engine.

335

336 Game Programming in C++: Start to Finish

An important team involved in the game creation process is the design team,
which could be (but is not restricted to) the level designer, map designer, and so on
for your game world. This team is crucial for creating the overall environment in
which the game will take place and includes handling any contact between the player
and any monster, or the player and the interaction with the game world itself.

For example, the game world is a dungeon of some kind built to be very creepy
and generally unpleasant for the player. After a particularly nasty encounter with a
monster, the hurt player enters a room containing a fountain and some crates with
an exit on the far side. The level designer creating this room has poisoned the water
but has hidden a water purification potion in oneofthe crates. If the player should
find the specific crate and use the potion on the fountain, the water is purified and
will heal the player if drunk. Otherwise, the player will die if they drink the poi-
soned water. :

All of these events and encountersare usually accomplished with the help of a
scripting library attached to the game engine. During the development of the game,
the level designers are givenalist of commands and/or a common language that the
engine will understand and process with the help of the scripting engine. The im-
mediate advantage to this approach is that if there needs to be any playability
tweaking or other alterations to the design of a location or encounter, the designer
can make the change to the appropriate scriptfile and can re-run the game. A full
recompile of the engine or game itself is avoided.

INTRODUCTION TO LUA

Initiated in 1993 by a team of developers from Brazil, Lua was created from the start
to be implemented as a scripting solution capable of running on multiple platforms.
Lua enables you to quickly implement a scripting language solution to affect just
about anything in the game engine and has been used for a host of commercial game
projects, such as Lucasarts’ Escape from Monkey Island adventure game, Blizzard’s
World of Warcraft, and Bioware’s Baldur’s Gate series of games, among others.

Lua does not execute the scripts you enter directly, but first runs them through
an interpreter that compiles them into a bytecode language, which is then executed
by the Lua virtual machine.

The 1ua_state variable is central to the scripting engine and contains the cur-
rent state of the Lua interpreter. You create a new lua_state reference with a call to
the 1ua_open function as outlined in Listing 19.1.

Clee

bot

bn

de

Bet

Ll

el

ES

EE

Introduction to Scripting

~~
337

LISTING 19.1 Using lua_open

#include <SDL.h>

extern "C"

{

#include <lua.h>
}

int main(int argc, char* argv[1)

{

lua_State* lua_vm = lua_open(0);

if (NULL == lua_vm)
{

//serious problem, exit program
return -1;

}

return 0;
}

Lua was written to be ANSI C compliant, so the compiler will automatically man-
gle the names of any function based on the C calling convention. To link properly,

NOTE you need to, therefore, surround the Lua headerfile with the extern *C* macro.

After you have finished with the Lua scripting library, you need to close and re-
lease the allocated heap memory taken by the 1ua_state reference. Thisis done with

the 1ua_close method as demonstrated in Listing 19.2.

LISTING 19.2 Using lua_close

#include <SDL.h>

extern "C"

{

#include <lua.h>
}

int main(int argc, char* argv[])
{

lua_State* lua_vm = lua_open(0);

338 Game Programming in C++: Start to Finish

if (NULL == lua_vm)
{

//serious problem, exit program
return -1;

//do our script processing here.
//now we are finished, close off Lua
Lua_close(lua_vm);

return 0;
}

Using the Interpreter
Now that you have created and initialized the Lua interpreter, you can begin to use
it for something useful within the game engine. Another important function is the
lua_dostring method, which is the common method of passing commands to the
Lua interpreter.

In order to properly interpret any script you feed into the engine, you still need
to initialize a few other Lua-specific libraries. The Lua documentation explains this
in further detail, but you can see how this is done by taking a look at Listing 19.3.

LISTING 19.3 More Lua Initialization

#include <SDL.h>

extern "C"

{

#include <lua.h>
#include <lualib.h>

int main(int argc, char* argv[])
{

lua_State* lua_vm = lua_open(0);

if (NULL == lua_vm)
{

//serious problem, exit program
return -1;

}

Introduction to Scripting 339

Lua_baselibopen(lua_vm);
Lua_iolibopen(lua_vm);
Lua_strlibopen(lua_vm);
Lua_mathlibopen(lua_vm);

//do our script processing here.
//now we are finished, close off Lua

Lua_close(lua_vm);

return 0;
}

You can now take advantage of some helpful Lua functions.

A SIMPLE SCRIPT

You can create a simple script to demonstrate Lua’s power and flexibility. The print
method of the Lua library is a good starting point for this demonstration, and List-

ing 19.5 shows some code.

LISTING 19.5 Simple Script

//snip

Lua_baselibopen(lua_vm);
Lua_iolibopen(lua_vm);
Lua_strlibopen(lua_vm);
Lua_mathlibopen(lua_vm);

//do our script processing here.
std::string strScript = "a = 2 + 2;\nprint(a);\n";

Lua_dostring(lua_vm , strScript.c_str());

//now we are finished, close off Lua

Lua_close(lua_vm);

return 0;
}

When you compile and launch the program, you will see a simple command
window with the result of “4”.

340 Game Programming in C++: Start to Finish

A Simple Script File

Processing script commands within the code base can be enough depending uponthe project, but in order to create a flexible and extendible engine, you should be
able to process script commands contained within a file.

Using the lua_dofile function, you can accomplish the same output as the
previous Simple Script program, but instead of hardcoding the value of the
strscript variable, the input comes from a scripting file as shown in Listing 19.6.

LISTING 19.6 A Simple Script File

//snip
Lua_baselibopen(lua_vm);
Lua_iolibopen(lua_vm);
Lua_strlibopen(lua_vm);

Lua_mathlibopen(lua_vm);

//do our script processing here.
Lua_dofile(lua_vm, "./simple_script.lua");

/Inow we are finished, close off Lua
Lua_close(lua_vm);

Within your favorite text editor, you can create the simple_script. lua file to
just contain the text shown in Listing 19.7.

LISTING 19.7 Simple Script.lua
—comment lines start with double-hyphens
—This script is just responsible for adding two
—numbers and displaying the sum
X = 10;
Y = 30;
Z=X4+Y;
Print("x + y = *"., 2);

Althoughthis is an extremely handy component to add to your engine repertoire,
there remains a problem: the scripting codeis completely wide open and visible to
everyone who downloads your game.

Introduction to Scripting

~~
341

INTRODUCING LUAC

Another component of the Lua distribution is the bytecode compiler known as

Luac. Similar in nature to the Java compiler, whenit is used to compile a Lua script
file, it will convert the contents from a human readable format into a bytecode rep-
resentation that can then be fed back into the Lua interpreter. This can be accom-
plished as demonstrated in Listing 19.8.

LISTING 19.8 Using Luac

Luac —o Simple_Script.bin Simple_Script.lua

In the simple_Script program you can now simply specify this new file created

by Luac, instead of the simple_Script.lua file.

When you create the script files as either text or with the Luac compiler, you can
use any file extension you want to. It is not necessary to name them *dua.

OTE

Lua Stack

Now, you can begin to understand Lua data types allowed in script. Since Lua is a

scripting language, you do not have the same data types that exist in the C/C++
realm. There are no ints, char, or float data types to use, since this would then be

moving away from the flexibility associated with a scripting language.
Instead, Lua has a generic multipurpose data type called a variant. This means

that the value of the variant is defined by the data it contains. The variant can con-
tain a number, string, function, userdata, table, or simply a null value. Since it can
contain many different types of data, you need a way to extract this information
within your C/C++ engine afterit has passed through the Lua interpreter. This is

accomplished by pushing the variant onto the Lua stack, which you then process
within the engine. Severalof these conversion methods are outlined in Listing 19.9.

LISTING 19.9 Lua Conversion Functions

double lua_tonumber(lua_State* state, int index);
const char* lua_tostring(lua_State* state, int index);
size_t lua_strlen(luaState* state, int index);
lua_CFunction lua_tocfunction(lua_State* state, int index);
void* lua_touserdata(lua_State* state, int index);

342 Game Programming in C++: Start to Finish

All of these Lua conversion functions require two parameters: the State in-
stance and an index value. The following details whatis involved.

State: The lua_State reference.
Index: This value can be positive or negative and represents an index into the
Lua stack. A positive value represents that you are specifying an absolute posi-tion within the stack, beginning from 1. A negative index implies an offset from
the top of the stack.

Calling a Lua Function

Part of the real power and flexibility of a scripting language comes from the abilityto call scripting methods from the compile engine base. This then gives you the
ability to both extend the engine as well as to make it easier to debug any level de-
sign features. Listing 19.10 demonstrates how to call a Lua function from your ap-plication.

LISTING 19.10 Calling a Lua Function

//snip
//execute your script
lua_dofile(oLuaState, "mult_function.lua");

// Call the special wrapper function, which will look-up and call//the Lua function for us.
int nAnswer = mult_numbers(oLuaState, 9; ~61)3

// Output the return value returned by the Lua function
cout << "The ultimate answer of life, the universe and everythingis: " << nAnswer << endl;

Listing 19.11 defines the mult function. lua scripting code.

LISTING 19.11 mult function.lua

— Define a simple Lua function that takes two arguments and mults
— them together

function mult_numbers(argtl, arg2)

print("argl =
", argil)

print("arg2 =
", arg2)

Introduction to Scripting

~~
343

return argl * arg2

end

USING LUA TO POSITION OBJECTS

A common practice for using Lua in a game engine is for object positioning. This

can be eitherfor initial object placement during program initialization, or perhaps
after a major event occurs in the game world. The goal of incorporating this type of

scripting in your game projects should be apparent: avoiding long recompiles. As

has been previously mentioned within this chapter, using script for certain aspects
of your game should greatly reduce the amount of time spent debugging objects in

your game world. It is also much easier to test game play, when you can make

quick and rapid changes to the world while avoiding a long recompile of the pro-
ject. You will work from the /chapter_19/BasicLuaPosition sample that demon-
strates one way to achieve this effect of object placement shown in Listing 19.12.

LISTING 19.12 LOADING THE SCRIPT

bool MainApp::onLoadWorld()
{

m_pLuaVM = lua_open();
if (NULL == m_pLuaVM)

{

//serious problem, exit program
return false;
}

lua_baselibopen(m_pLuaVM);
lua_iolibopen(m_pLuaVM);
lua_strlibopen(m_pLuaVM);
lua_mathlibopen(m_pLuaVM);
// Execute the script
lua_dofile(m_pLuaVM, "data\\calculate_position.lua");
//initialize our position variables
m_fZRotation = 0..0f;
m_fYRotation = 0.0f;
m_fXPosition = 0.0f;
}

There should be nothing new in Listing 19.12. You are initializing the Lua

libraries within the onLoadworld method of the application class. If the loading is

344 Game Programming in C++: Start to Finish

successful, Lua then proceeds to attemptto load your scriptfile. Listing 19.13 pro-vides the calculate_position. lua script that is used in the sample.

LISTING 19.13 CalculatePosition.lua
— This small lua sample demonstrates one sort-a practical way to use

scripting. We merely pass in two numbers, our current x position and
— our elapsed time variable. I think the rest is self-explanatory
— The only important thing is to return the new Xposition
function calculatePosition(argt, arg2)

temp = 1.0
if arg! > 5.2 then

argl = -5.2
end

— 5.0 is the speed that our object is moving..change at yourleisure! :)
argl = arg! + (temp * 5.0 * argz2)
return arg

end

Updating the Object Position

Now that the Lua script is loaded and ready to go within your game, you can gothrough the process of updating these world objects using the Lua engine. The
calculatePosition function is already defined in Listing 19.13, so you just need to
reference the method in the script from the onUpdateWorld phase of your applica-tion’s processing shown in Listing 19.14.

LISTING 19.14 onUpdateWorld

void MainApp::onUpdateWorld(float fElapsedTime)
{

m_fXPosition = calculatePosition(m_pLuaVM, m_fXPosition, fElapsedTime
)s
m_fZRotation += 8.0f * fElapsedTime;
m_fYRotation += 8.0f * fElapsedTime;

}

The rendering code for the objects in this sample has been seen many times be-
fore, so it does not need to be displayed here again.

Introduction to Scripting

~~
345

CHAPTER EXERCISES

1. Create another Lua script to perform simple vector calculations.
2. Create a Lua script to multiply two matrices of uniform size.

3. A popular use of scripting is for specifying which resources to load into

your game during startup. Create an object for the Peon engine to allow

you to specify which texture resources you need to load into your game
during initialization.

4. Expand upon the object(s) created in the third exercise to load other prop-
erties and resources such as audio files.

SUMMARY

One of the more popular features of game engines todayis how they handle script-

ing elements of the game design. You discussed how proper object scripting within

the game world can really open up the possibilities encountered by the player. You

were then introduced to the Lua scripting library, which launches a small virtual

machine to process any scripting commands. By gaining more experience with the

Lua language, you have the ability to add some helpful scripting interfaces to both

your game engine and the SuperAsteroidArena project.
In the next chapter, you will take the knowledge gained from the previous

chapters in order to add more substance to your SuperAsteroidArena project.

20 ; Polish Timebox

Chapter Goals

® Demonstrate how to add some simple effects to the project.
B® Discuss how to implement some basic Lua scripting support to the

project.

perAsteroidArena; in this chapter you incorporate some of the topics you
have covered over the previous few chapters with respect to scripting sup-

port, animation, effects, and even some GLSL.
Te are still some finishing touches and polish that you can apply to Su-

TIMEBOX GOALS

After taking a look at the timebox goals for this stage of the project, you are aiming
to add a few more effects and/or eye candy to the game to add some extra punch
to the SuperAsteroidArena experience. To take advantage of the Lua scripting
language, you will need to create an object that will load and process Lua scripts.
Another goal of this timebox is to add GLSL supportto the project. In this case, you

347

348 Game Programming in C++: Start to Finish

should make a shader object, which is fully optional depending upon the video
hardware available.

ADDING SCRIPTING SUPPORT

After being introduced to the Lua scripting library in Chapter 19, “Introduction to
Scripting,” you will now add some basic scripting support to the SuperAsteroidArena
project. These components will provide you with some capabilities to script differ-
ent events in the game, allowing you to debug problems far more easily, along with
all the other benefits that scripting gives you.

For the Peon library, you will create a small bare-bones object to handle some
Lua script processing. Listing 20.1 provides the detailed header information lo-
cated in the /Peon/PeonMain/ include folder.

LISTING 20.1 ScriptEngine

namespace peon
{

[%*
* This object is used for some basic Lua script support in our engine.
It
* just encapsulates
* The whole process of loading the Lua function pointers, as well as
* handling the scripts that
* the user will wish to load for their scene.
*/
class PEONMAIN_API ScriptEngine : public ISingleton<ScriptEngine>
{

public:
/**Constructor */
ScriptEngine();
/**Destructor*/
~ScriptEngine();
/** Grab a reference to our object */
static ScriptEngine& getSingleton(void);
/** Grab our singleton instance pointer */
static ScriptEngine* getSingletonPtr(void);
bs
}

Polish Timebox 349

ADDING SHADER SUPPORT

In this phase of the project implementation, you will add some basic GLSL support
to the SuperAsteroidArena project. The framework should be as light as possible to
allow you to add your own vertex and fragment shader scripts at your leisure, giv-
ing you the ability to organize the objects as you see fit. For the moment, it is easi-
est to create another Singleton object, which can be globally accessible to access any
shader scripts you might create for the game.

This object is designed this way on purpose. For the outline and design of your
own game, you might not want to even take advantage of shader scripting. Listing
20.2 covers the ShadertEngine module in further detail.

LISTING 20.2 ShaderEngine

namespace peon
{

]**
* This object is used for some basic GLSL script support in our engine.
It
* just encapsulates
* The whole process of loading the GLSL function pointers, as well as
* handling the scripts that
* the user will wish to load for their scene.
*
class PEONMAIN_API ShaderEngine : public ISingleton<ShaderEngine>
{

public:
/**Constructor */
ShaderEngine();
/**Destructor*/
~ShaderEngine();
/** Grab a reference to our object */
static ShaderEngine& getSingleton(void);
/** Grab our singleton instance pointer */
static ShaderEngine* getSingletonPtr(void);
}s
}

350 Game Programming in C++: Start to Finish

TIMEBOX EVALUATION

Since you are now completing this timebox of the project, you should sit down with

your design documentation and evaluate this stage. Are you happy with the design
of the gameso far and how it is evolving? Make sure that you do not get trapped
into a never-ending cycle of simply adding nice-looking effects to your game. Crit-
ically evaluate each one to decide whether it belongs with the rest of the game.
Otherwise, create a list of effects or otherrelated issues which mightfit more into a
“Version 2.0,” or even a sequel of the game.

CHAPTER EXERCISES

1. Take a look at the scriptEngine object and see what else can be defined by
scripts in your game. (Not only can your art and audio resources be
scripted, but so can just about everything else related to your game logic.)

2. Investigate the ShaderEngine Singleton object to see how you can best lever-
age shader technology in your environment. Some new AAA games under
development have dropped FFP programming completely and explicitly
use shaders, but there is no need to be so “radical” in your approach.

SUMMARY

You can always add minor tweaks to your project. Either you might decide that a
certain effect does not look quite right, or perhaps your enemy monsters are too
difficult in some situations. This chapter provided some insight and discussion as
to how you might choose to implement some of the topics you have covered in the
previous chapters. Feel free to experiment on your own to either create a really
snazzy look to your game, or perhaps to even giveit a retro feel.

In the next chapter, you are presented with more information and suggestions
on adding some finishing touches to your game project.

21 Finishing Tips and Tricks

Chapter Goals

® Review a small and simple list of suggestions to add polish to your
game.

B Review some tips to create your installation script.
Conductbeta testing,

® Create the User Instruction Manual.

s0, there are always thelittle details that will spring up near the end of yourproject. In strict software engineering terms, this is the dreaded 90/10 rulethat states that the last 10 percent of the project will consume 90 percent of your ef-forts. You need to keep your design document nearby, as you should be doing only
some final gameplay tweaking. Now is definitely not the time to add any new fea-
tures, unless it is deemed critical.

N= that you haveeither finished your gameor are in the process of doing

SIMPLE SUGGESTIONS

After you have created a version of your game that is ready for a final testing
process, it is important to cover the aspects involved in the presentation of the

351

352

ON THE CD

ON THE CD

Game Programming in C++: Start to Finish

game itself. Although there are only a small set of suggestions here, an endless
amount of small things can contribute to the overall polish of the game. For most
projects, the final touches are the most time consuming, but they also provide a
higher quality presentation to the player and can potentially increase sales.

It sometimes helps to take a few days off within this phase, in order to come back
to your game with a fresh outlook. You might have been staring at the same game
for so long that you miss small but important details that a fresh perspective can
spot. The following is just a list of suggestions to watch for. They may or may not
apply, depending upon your game.

Besides the obvious steps of making sure that the menu and GUI systems are
functioning properly, you should also ensure that there are some audio and visual
feedbacks to accompany it. For example, is there a small clicking sound to let the
player know that a menu option has been selected? Do you have any type of high-
lighting around the chosen menu option itself? Are any other sound effects provided
when you switch between menu options? Is the menu or GUI font appropriate for
the overall style and presentation of the game? Areall of the font characters legible?
Are there any spelling mistakes in any of the game text?

Game state transition effects are also an important consideration. When your
game moves betweenatitle screen and the main menu,for example, do you present
a progress barfor the player to signal that the game has not crashed but is simply
loading resources? Although there can be a danger of presenting too much feed-
back, it is also critical to keep reassuring the player that the game isstill running and
functioning properly despite any long load times. Some players can be very impa-
tient, and if things are not continually updating, then they might choose to end the
application out of a perceived frustration that nothing is happening with your
game.

Another important consideration is how the game processes the player’s input.
In the past, the Esc key was used in a game to exit the application. However, in most
games today, the Esc key either brings up an in-game menu and/or console, oris
simply used to back up to the previous dialog controls from within a GUI system.
A detail that some games overlook is the ability to configure the game’s input to
whatever the player chooses. Nothing can derail a player’s enjoyment like an an-
noying or strange key mapping that cannot be changed. Some basic play testing,
though, should bring to the forefront any strange key mappings.

Ifyou are only processing keyboard input for the game, then do not forget to hide
the mouse cursor. A good rule of thumb is that if the player can see it, they should
be able to useit.

Finishing Tips and Tricks

~~
353

Another basic area offinal touches revolves around video settings. Can the
player switch among different resolutions or change between windowed and full-
screen display modes? Can the player select between different levels of realism for
the game depending upon their video hardware (that is, disable/enable certain ef-

fects, and so on)?
All of these suggestions are just that: suggestions. Many might apply to your

game, many might not. It is important to remain objective about your game and to
learn to differentiate between good (or bad) feedback from your testers. They can
help pinpoint any problems with either your game or user interface design.

GAME PLAY TESTING

ON THE CD

While you have been testing the game during each iteration of your project, the
focus has been more on the technical aspects of the game. You need some other
players involved to find out how well or poorly the overall game plays and feels.
Doesit meet the original game requirements outlined in your design document? Is
the game fun (yes, thisis still an important question)?

It is important to obtain some feedback from some impartial testers on your
game project, especially if you plan on ever attempting to sell it. Table 21.1 provides
some simple survey material that you can gather from your testing group, which
can help iron out any last-minute problems with the game.

These sample questions were graciously offered from Mike Summers of Blue Bug
Games and were used in their title, Add’Em Up.

TABLE 21.1 Some Sample Gameplay Survey Questions

1. What kind of computer are you using? Operating System, Processor Speed, Ram?

2. If you didn't know how to play the game before, wasit easy to learn how? Were
the instructions easy to find and understand? If not, what could be improved?

3. Were you able to easily navigate around? Wasit easyto start? Quit?

4, Now that the game is more complete, would you recommend it to a friend?
Why, or why not? .

5. Any other comments? Please beas detailed and specific as possible.

Using feedback and survey questions from your testers is a great way to gauge
the status of your game.

354 Game Programming in C++: Start to Finish

INSTALLATION SCRIPTS

There comes a point in time when you wantto release the project to either an ex-
ternal group of beta testers, or to the public itself. Part of this process involves cre-
ating an installation routine for the player to execute to properly set up the assets
and binaries required. Although we touched upon this in Chapter 1, “Game Tech-
nologies,” this phase is critical to the overall appearance of the game. To distribute
an archive of your game (for example, in ZIP or RAR form) is quite unacceptable
and can quickly lead to other avenues of frustration for the player. For example,
they might not understand what an archive is or what to do with it; the game might
be required to decompress in a specific folder; their firewall software might blockit
by default, and so on.

To create an installation package for your project does not necessarily need to
be difficult. Although there are many fine packages and utilities available on the In-
ternet, the package used for this book is the InnoSetup tool. Thisfree installation
creation utility conforms to other commercial installation packages’ look and feel,
so it should not present anything strange or alien to the end user.

Using InnoSetup
Coes , After you have launched the InnoSetup installation located on the CD-ROM, you can
ovmee create a small script to put together the project. If you open the SuperAsteroidArena.iss

file, you can view how the installation script looks for SuperAsteroidArena, as shown
in Listing 21.1.

LISTING 21.1 SuperAsteroidArena.iss

;SuperAsteroidArena installation script v1.0

[Setup]
AppName=SuperAsteroidArena
AppVerName=SuperAsteroidArena version 1.5
DefaultDirName={pf}\SuperAsteroidArena
DefaultGroupName=Wazoo Enterprises Inc.

UninstallDisplayIcon={app}\SuperAsteroidArena.exe
Compression=1zma
SolidCompression=yes

[Files]
Source: "SuperAA.exe"; DestDir: "{app}"
Source: "*.dll"; DestDir: "{app}"
Source: "Readme.txt"; DestDir: "{app}"; Flags: isreadme

Caaf

i
i
a

Ll

2S

Finishing Tips and Tricks

~~
355

[Icons]
Name: "{group}\SuperAsteroidArena"; Filename: "{app}\SuperAA.exe"

[Code]
function InitializeUninstall(): Boolean;
begin

Result := MsgBox ('InitializeUninstall:' #13#13 'Uninstall is
initializing. Do you really want to start Uninstall?',
mbConfirmation, MB_YESNO) = idYes;

if Result = False then
MsgBox ('InitializeUninstall:' #13#13 'Ok, bye bye.',

mbInformation, MB_OK);

end;

procedure DeinitializeUninstall();
begin

MsgBox ('DeinitializeUninstall:' #13#13 'Bye bye!', mbInformation,
MB_OK) ;

end;

procedure CurUninstallStepChanged(CurUninstallStep:
TUninstallStep);

begin
case CurUninstallStep of usUninstall:

begin
MsgBox ('CurUninstallStepChanged:' #13#13 'Uninstall is about to
start.', mbInformation, MB_OK)

// ...insert code to perform pre-uninstall tasks here...
end;

usPostUninstall:
begin

MsgBox ('CurUninstallStepChanged:' #13#13 'Uninstall just
finished.', mbInformation, MB_OK);

// ...insert code to perform post-uninstall tasks here...
end;

end;
end;

You are simply putting some default locations where the project will be in-
stalled after the setup binary is launched by the player. Obviously, the player will be
able to change these default settings, but it is nice to provide some common loca-
tions. (For example, by default your game should be put into the c:\Program

356

ON THE CD

Game Programming in C++: Start to Finish

Files\<company>\<game> location on the player’s hard drive and maybe not just
c:\<game>). Although it has been stated before, it is worth walking through some
existing popular installs to verify what default locations/settings other game com-
panies are using. In Listing 21.1 you are providing a logic path for the (off chance)
that the player will want to uninstall your product.

Although nobody wants to think ofsomeone uninstalling a game they spent a long
time developing, be gracious and make sure that the script removes everything in-
stalled by your game.

For further details, simply check with the detailed help available for InnoSetup.

BETA TESTING OR QUALITY ASSURANCE TESTING

Gnd
ON THE CD

Assuming that you have your own internal quality assurance (QA) testing proce-
dures during the lifecycle of your game, you might also wantto recruit a final QA
group from within either a chosen favorite community of game developers on the
Internet, or some friends, relatives, or even neighbors. Whatever the case, by the
time the project reaches the beta testing phase, you should have pretty much dis-
covered and either noted or fixed any critical bugs within the project. Beyond the
stability of the game itself, you also need to ensure you are testing the actual game-
play as outlined previously. It is important to keep in mind the targeted audience
and to convey this to any group of beta testers. This communication is vital, as it
can help test the gameplay and experience of the game along with helping you dis-
cern what your testers are reporting to you.

For example, a game you are developing has the targeted game demographic as
the typical player who enjoys a fairly light role-playing game with simplistic battle
controls, similar to a game like Diablo. Upon the initial (disappointing) feedback
from beta testers, you quickly realize that some ofthe players are avid fans offirst-
person shooters and others enjoy a more relaxed type of puzzle game. Hence, they
might find the pace of your game quite slow or quite fast. After this is realized and
your target audience communicated to the testing group, you might find the qual-
ity of feedback to be much improved.

To minimize any mixed-message communication between you and the beta testers,
you should first ensure that they are somewhat fans of the type of game you are
sending them. The benefit of this is that they can help compare the product to what
they are currently enjoying, which can help pinpoint any gameplay or presentation
issues.

Finishing Tips and Tricks

~~
357

USER INSTRUCTION MANUAL

ON THE CD

ON THE CD

With the amount of effort that you have put into creating your game throughout
this book, please do not simply stick your keyboard commands into a plain textfile
and includeit with your game as your user manual. Along with the installation of
your game, another important consideration is providing some instructions for
the player. Surely you have purchased a game in the past, only to be extremely dis-
appointed with the instruction manual that came with it. Some companies treat the
instruction manual as an afterthought, but there are also a lot of good user in-
struction manuals out there, which can help to add definite depth to your game.
Imagine spending a few years of your life creating a fantastic role-playing game with
a huge amount of artwork, only to put the game instructions in a readme file. It
sounds crazy, but there are still companies that go to these extremes.

Another pitfall that some games experience is that the user instruction manual
(or player’s manual) is generated fairly early on in the project. This is a risky ven-
ture, as a game is more than likely to change or evolve a few times during the pro-
ject, which can outdate older documentation.

Now that you are nearing the end of the SuperAsteroidArena project, you
should be able to create an interesting user manualthat is available for the player.
It is enough for most projects to generate your user instruction manual in PDF for-
mat that you can distribute with your game.

Most installation procedures these days give the player the choice to view the in-
struction manual during the last step of the setup dialog.

Another use of the manual is to provide the player with first-level support. In
other words, it should not only detail any system or operating system requirements,
it should also contain a section describing any general technical support problems
that 90 percent of your customers might experience. It is also very important to
keep the technical verbiage as layman as possible. There is no point in providing
support documentation that the intended audience cannot read or understand.

Although it is a common stereotype, design the technical support for your parents.
They might not understand how to use 90 or so percent of the computer, but they
should not haveto in order to enjoy your game. The documentation should be easy
to access, and they should be able to solve any basic problems that might arise when
playing your game.

;

358 Game Programming in C++: Start to Finish

User Manual Checklist

In orderto help you with the user instruction manual, it would help to have a small
checklist to ensure that most ofthe bases are covered in your support. The most im-

portant thing to remember isto keep your target audience in mind throughout the
entire manual.

System requirements: In a few lines, detail the system requirements to play
your game. Keep your audience in mind here;if you are creating a puzzle game
for everyone to enjoy, then avoid listing too manydetails. Just listing a system
capable of running Windows 2000 with a 1 GHz machine and 64 MB of RAM
is probably sufficient. On the other hand, if you are writing a manualfor a

game targeting the hardcore user crowd, go ahead and list any DirectX require-
ments, along with any minimum video driver versions, and so on. Most of the
hardcore gamer crowd is already familiar with this technical verbiage.

Background: Although not critical for your user manual, you might wantto
include a background for your player to understand the environmentof the

game. This is part of the hook you need to generate interest in your game,
which is hopefully enough to make a sale. Provide some interesting details
about the game setting, but avoid writing another chapter ofthe Lord of the

Rings. Just as a suggestion, keep it as precise as possible, but loose enough to
demonstrate how fun and energetic the game is.
Technical support: Another important area of the instruction manualis the
technical support area. Again, rememberthat this manualis the first level of
support provided for your customer. The more the manual can help the player
troubleshoot a technical problem, the less effort is required by the player to
contact you. Any common problems experienced by your testers could proba-
bly go here, which also includes any common difficulties or issues noted dur-
ing the setup process.
Further support: Although search engines such as Google have entered the
general lexicon, do not force the player to hunt for your support area. In the
user manual, provide a clear Web site point of contact or at least a toll-free
phone number and email address that the player can use for any further diffi-
culties with the game.

Although the instruction manual for SuperAsteroidArena is not intended as the
de facto standard of game instruction creation, it can be a helpful starting point for

<>» your own projects. It is included on the CD-ROM, sofeel free to read through itat
ovmec your leisure for more help in creating your own.

Finishing Tips and Tricks

~~
359

GAME ASSET COMPRESSION/ENCRYPTION

Oneof the primary considerations of some developers or companies is the worry or
fear that the assets included with the game will be tampered with or stolen by other
companies. Depending on the project, these game assets can cost a companya fair
share of money; so it might be worth trying to taking steps to prevent them from
being modified or manipulated by a curious player. One such approach is to create
your own binary storage format for your levels, sound effects, music, and/or art-
work. This way, you can pack together every asset of the game into one single large
binary file that you then use by manipulating pointer references to this giant blob
of data. This is definitely not a very basic approach and can be more troublesome
than it is worth. If your file offset calculations are wrong, for example, then some
asset might not load or be presented properly. If the file becomes corrupted, then
it also pretty much destroys the access to every other asset.

Another concern is the total size of your project that is available for the public.
Although you might have a broadband connection to the Internet and be capable
of downloading a demo version of a game, which can exceed 100 MB in size, an av-
erage gamer interested in your product might not. They might have a dialup con-
nection to the Internet and would never be interested in something exceeding
10-12 MB orso in size.

One solution that most developers use to satisfy these requirements to encrypt
their game assets and/or compress the size of their product are third-party tools.

, One such popular utility to perform this manipulation is the Molebox runtime
ovmeco packer, which is included on the book’s CD-ROM in the /tools_install folder.

REGISTRATION/PATCH/UPDATING MECHANISM

Although you will strive to produce the highest quality code base you can put to-
getherfor the game, there will almost always be necessary updates for your product.
Perhaps you find and fix some critical bugs within the software, or you would like
to distribute additional content to the player.

This area of discussion is worth sitting down and analyzing the best approach for
your product and company. It is another situation in which there is no right or
wrong answer, simply the approach which you feel more comfortable supporting.

Although we touched upon creating differences between the demo and regis-
tered versions of your game back in Chapter 2, “Design Fundamentals,” you will
need to contemplate more about how you want to distribute your game. Some
companies take the approach ofa registration key to unlock the registered version

360

ON THE CD

Game Programming in C++: Start to Finish

of the game. In this scenario, your demo version of the game in fact contains the en-
tire product. After the player pays for the registered version of your game, you
would then send them a registration key, which will unlock therest of the game.

Another approach taken by some developersis to create two distributions of
the game; one for the demo version and one for the registered version. In this sce-
nario, after the player registers the product, you might send him a login and pass-
word to a secure download location on your website.

The updating process needs to be considered as well. There are several ap-
proaches that one might take, and this is by no means a complete list.

Create a patch: In this case, you would put together a small patch file for the
player to download from your Web site. Depending upon the information
gathered by the purchase process, you would either email everyone who bought
the game or would display this update on the product’s Website. The player
would then download the patch and launch it on their system to update the
game. :

Auto-patching: In this case, your application would first make a version
check with some kind of resource on your company’s Web site. This verifica-
tion check would then inspect the version of the software available on your
Website to the version the player has installed on their machine.If they differ,
then the game will either automatically prompt the player to install it or will
perform this task without player intervention.

Do not forget that not everyone is permanently attached to the Internet. The cus-
tomer might want to launch your game from their notebook device, which may be
offline. Make sure you take this into account when creating a patch/update process.

FINAL THINGS TO REMEMBER

One of the aims ofthis book was to present you with a gestalt approach to creating
a game. As you should have learned, there is more involved than simply rendering
an explosion or playing a sound effect. Creating a game is a much more holistic
venture and can help broaden not only your resume, but your experience in all of
these different areas.

Where you go after this book is up to you. The world of game programming is
vast and continually evolving. Keep reading whatever you can on game develop-
ment, keep practicing manipulating your game world objects to produce your de-
sign vision, and above all: KEEP PLAYING.

Finishing Tips and Tricks

~~
361

CHAPTER EXERCISES

1. Although you are close to the end, an almost insurmountable number of
issues can pop up during the last few stages. Do not forget to have your exit
strategy defined so that you can draw the line on when your project is

finished.
2. A worthwhile investment for your project might be a project tracking tool

of some kind that can store any bug reports or incident issues that your beta
testers experience. With the help of Google, research a few such products
and decide whether you need them or not. Otherwise,if you have sufficient
knowledge of spreadsheet applications, you can use these to generate a
matrix of bugs and incidents.

SUMMARY

You have come a long way with the creation of the Peon engine project, as well as

your SuperAsteroidArena game. Not to be forgotten, there are quite a lot of little
things that can add more polish to your project, making it more appealing for the
player. You have only touched on a list of bare essentials, but there is definitely an
infinite amount of other polish techniques that you can apply to any game. You
have also been introduced to the creation of installation scripts to create install

packages for your project,as well as discussing some simple beta testing techniques
and processes for finding as many gameplay issues as possible during these final

stages before a release. You were also introduced to generating a quality user in-
struction manual that should provide the player with enough information to really
minimize any problems he could experience just starting your game, along with

some clear details on how to play the game itself.

Appendix

+ Setting Up the SDL and
the Compiler

your favorite compiler. With the vast amountof different compilers and IDE
tools available for developers today, we decided to use three environments

for this book. For the most part, you simply need to configure the IDE properly in
order to find the header and library files for SDL.

B efore you canstart executing any of the code in this book, you need to set up

INSTALLING SDL

<e5 SDLis contained on the book’s CD-ROM;to install SDL, unzip it to your favorite
ome |ibrary location on your machine. Unless otherwise noted, the default location for

the SDL is C:\SDL.
The required subprojects of SDL_Image, SDL_Mixer, and SDL_Net haveall

been included for your convenience in the SDL folders. To compile and link your
SDL projects properly, you need to ensure to link with the following libraries:
SDL.1lib, SDLmain.lib, SDL_image.lib, SDL_mixer.lib, opengl32lib, and glu32.1lib.

MICROSOFT VISUAL STUDIO 6.0

The Visual Studio 6.0 IDE is starting to show its age among the other compilers
available for Windows, butit isstill a very popular choice for game developers. It is

a very lightweight IDE compared to that of the .NET 2003/2005 products because
it contains no capabilities of compiling .NET-managed applications, among some
of the other features that the newer versions offer.

To compile and run your SDL applications using this IDE, you need to specify
in the default list of header and library files where the SDL directory is located. This
is done using the Tools->Options menus.

363

364 Game Programming in C++: Start to Finish

Ifyou are using the Studio 6.0 product, please add the STLPort project headers and
library path included on the CD-ROM. The version of STL that ships with the IDE

NOTE has been proven to contain several memory leaks and other performance-related is-
sues. Another option is to download and install the latest version of the Platform
SDK.

MICROSOFT VISUAL STUDIO .NET 2003

SDL will compile and run just fine from the NET 2003 product. You just need to
specify the location of the SDL header and library path. The version of the STL that
ships with this product is acceptable, so you do not need to use the STLPort
libraries.

MICROSOFT VISUAL STUDIO .NET 2005
Asof this writing, this IDE is the very latest from the Visual Studio team at Microsoft.
It is a free download (so far) from the http://labs. microsoft.com Web site. Afterit is
downloaded and installed, you need to configure the IDE with the location of the

“<., header and SDL library files, following the same procedure that you used for the
ame NET Studio 2003 product. More detailed instructions are included on the CD-ROM.

Appendix

Debugging Tools

to game developers has increased at a fairly linear rate. However, with this
increase in the quantity of resources, there has also been a corresponding

increase in the complexity of the hardware and systems involved; Windows XP is

definitely a more complex operating system than Windows 3.11. As you create and
develop new modules within your game or game engine, you are also potentially
introducing new bugs to the system that need to be taken care of.

These are just some small methods available to you, which rely mostly upon the
Visual Studio family of development products.

Teen
the past several years, the amount and quality of resources available

OUTPUTDEBUGSTRING

A commonly used technique for debugging codeis to use a printf or other such

statement to log a known state or message to the debugging console. For game
programming on the Windows platform, you can use the OutputDebugString
method to accomplish the same thing. Any text that you output with this method
will be displayed in the Debug Window of a Visual Studio IDE.

Usually when developing an application, most programmers by default build
and link their application code to the debug libraries in order to ensure that appli-
cation code is functioning as expected. When they are ready to publish or release
the application, the developer usually switches the project to build and link the ap-
plication using the runtime libraries, which are optimized in both speed and size.

When you switch the compiler to build release mode binaries, the compiler will ig-

nore OutputDebugString statements. This saves you the time and hassle of having to

go through your code to manually remove each statement.
Listing B.1 has an example of using the OutputDebugString function call.

365

366 Game Programming in C++: Start to Finish

LISTING B.1 Using OutputDebugString

OutputDebugString("It was a bad call Ripley. A bad call.");
//The above string *could* be also written with compiler

preprocessor ’

//commands as:
#ifdef _DEBUG //if our debug mode is enabled

printf ("It was a bad call Ripley. A bad call.");
#endif

ASSERT

The old standbyfor developers, the assert method, can also be used to quickly test
just about anything. The common approach is to use assert to find out whether an
interface or component is NULL before you attempt to useit, as shown in Listing B.2.

LISTING B.2 Using assert

//our objA is our player and we need to test if he is going to
//collide with objB which is a Rover bent on capturing you!
assert(objA != NULL); //Number 6

assert(objB != NULL); //The Rover

//both objects are valid, so it's safe to throw them into
//the collision detection method. Does No. 6 escape?
bool bRet = DoObjectsCollide(objA, objB);

GDEBUGGER

ON THE CD

A popular tool for debugging the current state of the OpenGL pipeline is the
gDEBugger tool from Graphic Remedy. An evaluation copyis included on the
CD-ROM. Until now, graphics programmers on the Windows platform had no
specific tools with which to really debug OpenGL commands. OpenGL developers
could only look with envy to their Direct3D brethren who were able to view snap-

_

shots and state parameters of the Direct3D pipeline with the D3DSpy and the PIX
utility. Graphic Remedy has entered the scene, providing a long-awaited solution
for OpenGL programmers: the ability to use a proxy interface between the
OpenGL32.DLL and the OpenGL DLL ICD provided by the video hardware ven-
dor. One popular way to use the gDEBugger tool is to step through the OpenGL
commandsin a given scene. This allows you to step through any OpenGL-specific

Debugging Tools 367

statements to help troubleshoot any problems. With the other advanced OpenGL
debugging services this tool offers,it is well worth evaluating for yourself for de-
bugging your own OpenGL projects.

GLSL VALIDATION TOOL

When working with GLSL vertex and fragment programs, anything to help code
and debug shader scripts is more than welcome. 3Dlabs has put together a front-
end shader script verification tool called the GLSL Validator.It is a simple utility to
test your shader scripts before loading them into your programs.It is also available

(<>» onthe CD-ROM. You just launch the application and load your shader or fragment
ome programs into the IDE. The validator will then process the script to ensure validity

with the current specification.

APAAo

Appendix

ASCII Table

No game programming book is complete without a chart of the American
Standard Code for Information Interchange (ASCII), shown in Figure C.1.

Ctrl Dec Hex Char Code Dec Hex Char Dec Hex Char Dec Hex Char

~@| 0|00 NUL 32|20 64 |40|@ 96|60|*

An|1 fot soH|[33 [21|¢ 65 |a1|A 97 |61|a
~B|2 |02 STX||34 |22|= 66 (42|B 9s|e2|b
rc|3 |o03 ETX|[35 [23|# 67 43|C 99 |63|C

~D|4|04 gor|[36 [24|$ 68 (44|D 100 [64|d
~e|5 |o05 Eng|[37 [25|% 69 [45|E 101 [65|€
~F|6 |06 ack|[38 |26|& 70 |46|F 102 [66|T

rg|7 |o7 BEL||39 |27|° 71 |47|G 10367|9
AH|8 |o08 BS sw [28 |(72 |4s|H 104 [68|h
Ar|9 |o9 HT 41 [20 |) 73 [40|T 105 |69|1

~1 [10 [oa LF 42 |2a|= 74 aa|J 106 [6A |]

AK [11|0B VT 43 [28|+ 75 |48|K 107 |B|k
AL [12 |ocC FF a4 |2c | 76 |4c|L 108 [6c |]

AM|13|oD CR 45 [20|— 77 |4p|MH 109 [6D|M

AN|14|OE So a6 |2E|° 78 |4e|N 110 |6E|nN

~0|15|oF si a7 |2F|/ 79 |4F|0 111 |6F|O

~p|16|10 pie|48 [30|© so |so|P 112 |70|P

AQ [17|11 pct|{49 [31|1 gr [51|Q 11371|Q

ar|18|12 pcz||so [32|2 82 |s2|R 114 |72 |r
as [19 [13 pcs||s1 [33|3 83 (53|$ 11573 |S

AT [20|14 pce|[52 [34|& ga [sa|T 116 [74|t
Au|21|15 nak [|s3 [3s |B 85 [55|U 117 |75|u
av|22|16 syn|[54 [36|6 86 [56 | 11876|V

Aw|23 [17 ete||s5 [37|7 87 |s7|W 11977|w

Ax|24|18 can||s6 [38|8 gs |s8|K 12078|®

Ay 25|19 EM 57 [39|9 89 |s9|¥Y 121079|VY

az|26|1A sus|[58 [3a|© 90 [5a|Z 122|78|2
Af|27|1B Esc|[59 [3B | 91 |se|[123 |78|{

~ [28|1c FS 60 [3c |< 92 [sc|\ 124 [7|}

~l |29|1D GS 61 [3D |= 93 [sp |] 125 |7D|}

An |30 |1E|4 |RS 62 |3E|> 94 |sE|=~ 126|78|~
Ao [31 |1F|® {us 63. LaF |.7 95 |sF|— 127 |7|OF

* ASCII code 127 has the code DEL. Under MS-DOS, this code has the same effect as ASCII 8 (BS).
The DEL code can be generated by the CTRL + BKSP key.

FIGURE C.1 ASCII chart.

369

Appendix

Windows Vista and OpenGL

tion of the release of the recently named Windows Vista, known previously
as Windows Longhorn. Microsoft is planning two release candidate versions

of Vista throughout 2006 anda target release date of the final version to the public
in December 2006.

Among the other new features of Vista, the user interface for the operating sys-
tem has been completely revamped from previous versions of Windows. Working
under the code name of Aero, the new user interface experience is intended to be
cleaner and more aesthetically pleasing than ever before. The critical runtime com-
ponent ofthe Aero engine is the Direct3D interface, which handles the majority of
the rendering of the entire desktop and its features.

On August 6, 2005, Microsoft announced that for OpenGL applications to
function under Aero, OpenGL functionality will be implemented on top of Di-
rectX, using Direct3D to translate and process OpenGL commands. Asa result of
this proxy between these two technologies, Microsoft states that OpenGL perfor-
mance could be impacted by as much as 50 percent.

As of this writing, no official response has been heard from any of the major
video hardware vendors on the issue. Randi Rost, a 3DLabs employee, is on record

as making the following statement concerning this announcement by Microsoft:
“Accelerated OpenGL drivers will be available under Windows Vista. 3Dlabs

and other vendors will provide OpenGL drivers that will take full advantage of the
underlying features and performance of the graphics hardware. However, the cur-
rent plan for Windows Vista is that as soon as an application accesses the graphics
hardware through an accelerated OpenGL driver, the Windows Vista composited
desktop is turned off. The result will be that the windows on the screen will be
turned opaque. Applications that are running full-screen will not be affected. To

preserve the desktop appearance, you can make your application utilize Microsoft's

OpenGL implementation, which is layered on top of DirectX. The Microsoft

OpenGL implementation is based on OpenGL 1.4 and the layering on top of
DirectX can result in reduced performance. 3Dlabs is continuing to work with

A
s of this book’s writing, Microsoft is working harder than ever in anticipa-

371

372 Game Programming in C++: Start to Finish

Microsoft in an effort to provide a fully composited desktop along with fully accel-
erated OpenGL for Windows Vista.”

According to the official OpenGL Web site, http://www.opengl.org, and infor-
mation gleaned from other hardware vendors, the technical know-how already ex-
ists to provide an ICD solution. Theystress, however, that communication between
Microsoft and the vendors is critical for its success. If it is not too late by the time
of this book’s printing, be sure to contact your hardware vendor about this prob-
lem and urge them to keep attempting this communication with Microsoft.

To be clear, this is not about OpenGL being better than Direct3D; they are two
very powerful graphics APIs that both have their uses in any application. However,
this limitation under Aero represents a lack of choice available to the developer for
any Vista application.

Some pundits in the industry also fear thatif this limitation persists through to
the official release of Windows Vista, then it could severely curtail any games de-
velopment on other platforms such as MacOS or Linux. Their reasoning is that
most game development companies use the cross-platform OpenGL to target both
the Windows and MacOS user base. Without the availability of OpenGL, most
companies will revert to programming strictly in Direct3D.

Appendix w

w
a
B®

=
LE About the CD-ROM

browse structure. The content of each folder is noted here, along with in-T= CD-ROM included with this book has been organized into an easy-to-

structions on setting up the CD-ROM.

/Chapter_Source: This folder contains some subfolders for the source code

to this book:

Chapter_xx: This subfolder contains any chapter-specific code that is further
organized and subdivided into respective chapters.

Bin: This folder contains the compiled binaries of each chapter sample. -

/Peon: This folder contains the development tree for the Peon main engine
project.
/tools_install/: This top-level folder contains the third-party tools useful for
the game developer.
Paint Shop Pro: This folder contains the evaluation version of one of the

most common paint tools for creating your own 2D textures for use on any
meshes within the game.
Audacity-win-1.2.3.exe: This is the Audacity tool useful for editing sound

effect files.
cvsnt-2.5.01.1976.msi: This is the setup binary for the popular Concurrent
Versioning System for Windows.

Doxygen-1.4.3-setup.exe: This is the popular Doxygen tool that generates
helpful documentation in HTML format.

3D Studio Max: This folder contains a 30-day evaluation version of the pop-
ular 3D modeling studio.

TortoiseCVS-1.8.13.exe: This is the setup binary for the Windows explorer
plugin, TortoiseCVS.
NSIS: This folder contains the Nullsoft Scriptable Install Software application
to compile your installation scripts.

OpenAL: This folder contains the OpenAL SDK from Creative Labs.

373

374 Game Programming in C++: Start to Finish

Lua: This folder contains the Lua script interpreter library.
/game_source: This folder contains some publicly available source code that
has been released by commercial developers.
/quake2: Thisis the source code to Quake2 by Id Software.
/quake3: This is the source code to Quake3 by Id Software.

REQUIRED SOFTWARE

In order to compile the source code contained within this book, you need to use a
compiler compatible with Windows. The source codeto this book has been written,
compiled, and tested with Visual Studio 6.0 SP6 and Visual Studio .NET 2003, but
it might be possible to export the projects to any other commonly used IDE that
supports the SDL. The solution files contained in the source code are for Visual
Studio 6.0 and .NET 2003.

SYSTEM REQUIREMENTS

Although more is always better for game programming, the game and source code
will require at least a CPU capable of 1GHz with a minimum of 256 MB RAM.
Since you are using OpenGL, ensure that you are running with the latest drivers in-
stalled from your video hardware’s vendor’s site.

INSTALLATION

For most of the default installations, you simply need to launch the appropriate
setup.exe or .msi installation file.

AUTHOR SUPPORT

The Web site for this book, http://book.wazooinc.com, contains the most up-to-date
errata and bug fixes for this book, as well as a link to some forums to post any prob-
lemsor difficulties with compiling and using the source code. If you are experienc-
ing any problems compiling the source code or sample applications within this
book, please make sure that you have downloaded thelatest version of the code
base from the Website.

Appendix

Further Resources

ranging from the most basic of beginner material to the most advanced the-

ory. Games involve the use of art, sound, mathematics, graphic effects, net-
working theory, and a host of other areas of knowledge.

Along with a good search engine, the following Web sites might help when you
encounter some sticking points in your projects. This is by no means a complete list-

ing, but it does contain some great starting points that you might not find directly
through your search. Thesesites are also not in any specific ranking or preference.

For your convenience, these links also appear on the “homepage” for the book
contained on the included CD-ROM.

T= field of knowledge on game programming is rather large and expansive,

LICENSE SPECIFIC

http://www.opensource.org—The home pageforall your Open Source license needs
http://www.creativecommons.org—The site for creating a Creative Commons

license
:

OPENGL SPECIFIC

http://www.opengl.org—The home page of the OpenGL
http://nehe.gamedev.net—A site containing many OpenGL tutorials ranging from

beginning to intermediate/advanced material
http://www.ati.com/developer/index.html—Developer site at ATI
http://developer.nvidia.com/page/home.html—Developer site at NVidia
http://developer.3dlabs.com/—Developer site at 3Dlabs

375

376 Game Programming in C++: Start to Finish

SDL SPECIFIC

http://www.libsdl.org—The home page for the SDL toolkit
http://www.libsdl.org/projects/SDL_image—Home pagefor the SDL_image add on
http://www.libsdl.org/projects/SDL_mixer—Home page for the SDL_mixer add on
http://www.libsdl.org/projects/SDL_net—Home page for the SDL_net add on
http://sol.gfxile.net/gp/—Sol’s SDL tutorials, which are loaded with SDL
information

DIRECTX SPECIFIC

http://msdn.microsoft.com/directx—The home page for DirectX

AUDIO PROGRAMMING

http://www.openal.org—The home page for the OpenAL API
http://developer.creative.com/landing.asp?cat=1¢rsbcat=31 &top=38—The OpenAL re-
source page at Creative Labs

http://developer.nvidia.com/object/nvidia_audio_sdk.html—An audio resource page
at NVidia
http://www.fimod.org—The home page of the FMOD library
http://www.harmony-central. com/Computer/Programming/—A full page of audio

programming information and links
http://www.codeguru.com/Cpp/G-M/multimedia/—Some useful audio program-

ming information at CodeGuru
http://www.codeproject.com/audio/—More useful audio programming information

and source code at CodeProject

GAME DESIGN

http://www.vancouver. wsu.edu/fac/peabody/game-book/Coverpage.html—A repostof some older design material written by Chris Crawford
http://www.gamedev.net/reference/list.asp?categoryid=23—A great collection of ma-

terial gathered at GameDev
http://civ.idc.cs.chalmers.se/projects/gamepatterns/—A collection and site dedicated

to recording useful design patterns for games

Further Resources 377

http://www.cs.queensu.ca/~dalamb/Games/design/design.html—Designing Games
FAQs from the rec.games.design newsgroup
http://www.ludism.org/gamedesign/—The Game Design WIKIsite

NETWORK PROGRAMMING

hitp://www.ecst.csuchico.edu/~beej/guide/net/html/—Beej’s Guide to Network Pro-

gramming, which is one of the great foundation pieces written on network pro-
gramming
http://www.flipcode.com/articles/network_part01.shtml—An introductory series of

tutorials at FlipCode
hitp://www.gamedev.net/reference/list.asp?categoryid=30—More information and

articles on network multiplayer implementation at GameDev
http://tangentsoft.net/wskfaq/—The Winsock Programmer’s FAQ home page
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnanchor/html/ntwrkprot.asp—Networking Protocols section of the MSDN

http://enet.bespin.org—The home page for the ENET socket library, which provides
a thin layer for reliable UDP
http://www.rakkarsoft.com—The home page for the RakNet multiplayer library
http://www.hawksoft.com/hawknl/—The HawkNL multiplayer game library

http://www.replicanet.com/—The home page for the ReplicaNet networking library

SCENE GRAPHS

http://www.openscenegraph.org—The home page to the OpenSceneGraph SDK

http://www.ogre3d.org—A popular open source 3D engine that also uses a scene
graph for scene processing
http://irrlicht.sourceforge.net—Another popular 3D engine with source code that

uses a scene graph

AGILE SPECIFIC

http://www.agilealliance.org/home—The Agile Alliance home page. This should be
the first stop when investigating this design approach.
http://www.agilemodeling.com/—The Agile Modeling home page, a site dedicated to
documenting effective practices for Agile modeling.

378 Game Programming in C++: Start to Finish

GAME PORTAL SITES

http://www.bigfishgames.com—BigFishGames
http://www.realarcade.com—The RealArcade site
http://www.reflexive.net—Another portal
http://www.popcap.com—One of the most popular game portal sites
http://www.garagegames.com—Another portal (and developer resources) by the

same people who make Torque

Index

SYMBOLS
(pound), UML, 35

+ (plus), UML, 35
- (minus), UML, 35

A
AAA game projects, 4, 56
AABB (Axis-Aligned Bounding Box)

bounding sphere vs., 231
overview of, 228-230
plane collisions vs., 232

Action/Arcade genre, 47
ActiveState, 188

addition, matrix, 97-98
adventure genre, 47
affine projection, 92

aggregation association, UML, 36

Agile, 32-33, 377

algorithm, basic quaternion, 108

alpha-blending, 154-155
alpha channel, 131
ambient light, 148
American Standard Code for Information Inter-

change (ASCII) table, 369

amplitude, 202
anatomy, game, 44-46
AnimatedMeshFactory, 284
animation

billboard, 287-291, 305-307
model, 279-280

ANSI compliant, Lua as, 337
ARB (Architecture Review Board) OpenGL, 111
Architecture Review Board (ARB) OpenGL, 111

arrays, vertex, 156-158
ASCII (American Standard Code for Information

Interchange) table, 369

assert method, debugging, 366

asset pipeline, 271-272
assets, compression/encryption of, 359

association relationship, UML, 36

attribute types, built-in shader, 322-323
attribute variables, GLSL, 322, 329
audience

basing game requirements on, 48-49
reasons for making game, 49

audio
buffer, OpenAL, 209
finishing tips, 352

~

music data, 203-208
web site resources, 376

AudioEngine
loading sounds, 224-225
overview of, 80

playing sounds, 225
unloading sounds, 225-226
using, 223-224

Audio Library Context, OpenAL, 208
authentication, client-server, 261
author’s website, 374

auto-patching, 360

Axis-Aligned Bounding Box (AABB), see AABB

(Axis-Aligned Bounding Box)

B
back buffer (secondary surface), 118

background
sound layer, 202
for user manual, 358

basic texture mapping, OpenGL, 129-135
beta tests, 354-356
billboard animation, 287-291, 305-307
Binary Space Partitioning (BSP) trees, 176

binding, 250
blending calculations, OpenGL, 154-155
Blitz3D/Max, 3

BlitzBasic language, 3

blocking sockets, SDL_NET, 247, 254
BMP image files, 312-314

379

380 Index

bone information, MD3 model format, 282
bounding sphere collision detection, 230-231
BSD license, 2
BSP (Binary Space Partitioning) trees, 176
budget planning, 51-52
built-in operations, GLSL, 324-325
built-in types, GLSL, 321-323

C

camera/view orientation, 103-108
basic quaternion algorithm, 108
creating basic camera, 105-106
creating view transformation matrix, 103-104
Gimbal lock, 106-107
projection transformations, 104-105
quaternions, 107-108

Cartesian Coordinate System
overview of, 89-90
using Fixed Function Geometry Pipeline, 90-92

casual gamers, 48
cathode ray tube (CRT) monitors, 119-122
CD-ROM, accompanying book

about, 373-374
BasicBlending sample, 155
BasicFog, 143

BasicMultitexturing sample, 161
blending calculations, OpenGL, 155
CVSNT installation,8
Doxygen, 14, 16

Dynamically Linked Libraries, 74
FileLogger, 66

initializing OpenAL device context, 209
InnoSetup, 17, 21
MD3 model format, 284
Milkshape3D, 273
neSimulator, 235
OpenGL display lists, 135
Peon, 79

SceneFont, 136, 139
SceneLight file, 150
SceneRenderer, 114, 151
SceneTexture, 133
SDL “Hello World”, 56
SDL installation, 363
STLPort libraries, 27
TortoiseCVS GUI, 8

user manual, 358
vertex arrays, 156

View Frustum, 170
CEGUI (Crazy Eddie GUI) toolkit, 187-188
Certain message types, ReplicaNet, 266
C for Graphics (Gg) shading language, 319
checkout, objects, 13-14
classic waterfall design process

iterative design vs., 31-33
overview of, 30-31

class notation, UML, 34
clearDevice, SceneRenderer, 121
client-server architecture

overview of, 243
prediction/authentication in, 261
starting basic client, 250-252
starting basic server, 247-250

client side
Agile method working directly with, 32-33
in client-server architecture, 243
sending and receiving data, 253-254
starting basic, 250-252

clipping and viewport stage, FEGP, 92
clipping spaces, defined, 167
code reuse, 38
Collada (COLLAborative Design Activity), 284-285
collision detection, 227-240

Axis-Aligned Bounding Box and, 228-230
bounding sphere collision detection and,

230-231
chapter exercises, 240
plane collisions, 231-232
ray collisions, 232-234
speed and, 227-228

color, vertex arrays, 156

comment notation, UML, 35
compiler

InnoSetup, 18, 21-22
Luac, 341-343
SDL, 363-364

composition association, UML, 36-37
compression, game, 359
COM technology, 69-71
concatenation, matrix, 102-103
Concurrent Versioning System, see CVS (Concur-

rent Versioning System)
conversion, Lua functions, 341-342
coordinates, MD3 model format, 283

coordinate transformations, 90-92, 99-102
COPYING text file, 3

Crazy Eddie GUI (CEGUI) toolkit, 187-188
Creative Commons license, 2

cross product, 93-94, 149

CRT (cathode ray tube) monitors, 119-122
cubes

creating skybox, 291-294
rendering, 140-142

CVS (Concurrent Versioning System)
installing CVSNT, 8-9
overview of, 7

using, 9

CVSNT
defined, 7

installing, 8-9

D
DAGs (directed acyclic graphs), 171

data types, GLSL

built-in, 322-323
input and output, 322
language syntax, 324
overview of, 321

DDLs (Dynamically Linked Libraries), 73-74
dead-reckoning, 261-262

deathmatch scenarios, 242
debugging tools, 365-367
DEBUG level messages, FileLogger, 67

demo versions,vs. registered, 52, 359-360
dependency relationship, UML, 36

depth (z) axis, Cartesian Coordinate System, 90
depth buffer, scene geometry, 166

design, game, 29-53
anatomy, 44-46
chapter exercises, 53
classic waterfall, 30-31
defining game design, 29-30
defining project roles, 51
demo vs. registered versions, 52

developing budget, 51-52
iterative, 31-33
reusability, 38-44
for SuperAsteroidArena project, 46-50
using Unified Modeling Language, 33-38
web site resources, 376-377
working with timeboxes, 50-51

design team, 336
destination, in alpha blending, 154

destruction phase, 46

Index

diffuse light, defined, 148

digitized sound, 202
directed acyclic graphs (DAGs), 171

directory, information for, 19-20
DirectPlay, 245-246
DirectX

overview of, 3—4

shading language, 318

using SDL vs., 56

website resources, 376
disabling, depth buffer, 166

displaylists
for cubes, 140-142
using OpenGL, 135-140

distance calculations, vectors, 94
documentation

Agile, 32-33
application, 22

Doxygen, 14-16
InnoSetup, 17

user manual, 357-358
dot product calculations, vectors, 94

double buffering, 120

Doxygen, 14-16
Doxywizard, 15-16
drop requests, RelicaNet, 267
Dynamically Linked Libraries (DDLs), 73-74

E

edgeflag, 156
effects layer,for sound, 202-203
electron guns, 119

encryption, game, 356
Endian order, SDL, 65

EngineCore
adding input support to, 198-200
creating, 60-61
overview of, 80

using Windows initialization files, 67-69
enumeration, joystick, 195-196
environment layer, sound, 202
environment mapping, 291-294
ERROR level messages, FileLogger, 67

Esc key, 352
Eular angles, 106

exp modes, fog effects, 143-144
extensions, OpenGL, 158-160
extensions, shader, 325-327

381

382 Index

extern “C” macro, 337
eye vector, view transformation, 104

F

facade pattern, 43-44
FATAL level messages, FileLogger, 67
feedback, game testing, 353
FFGP (Fixed Function Geometry Pipeline), 90-92
FFP (Fixed Function Pipeline), 317
file formats, 273

FileLogger, 65-67
files, project, 11-13
finishing tips, 351-361

beta or quality assurance tests, 356
chapter exercises, 361

game asset compression/encryption, 359
game play testing, 353
installation scripts, 354-356
registration/patch/updating mechanism,

359-360
simple suggestions, 351-353
user instruction manual, 357-358

fire events, player, 268
Fixed Function Geometry Pipeline (FFGP), 90-92
Fixed Function Pipeline (FFP), 317
flipDevice method, SceneRenderer, 121
FMOD, 4
fog effects, 143-144
fonts

finishing tips for, 352

rendering text and, 135-140
forward movement, player, 222
foundation and state soundbox, 50
fragment processor (pixel shaders), GLSL, 319, 321
frame buffer, 113
frames, in billboard animation, 306-307
frequency, 202
front buffer (primary surface), 118
full-screen mode, 118

G

game design, see design, game
game engines, 77-79; see also Peon engine
game play testing, 353

game portal sites, 378

game technologies, 1-28
Blitz3D/Max, 3

chapter exercises, 27

common license agreements, 1-3
Concurrent Versioning System (CVS), 7-10
creating SuperAsteroidArena, see

SuperAsteroidArena project
DirectX, 3—4

FMOD, 4
OGRE, 4
OpenAL, 4-5
Popcap framework, 5

Quake2 and Quake3, 5-6
RakNet, 5

ReplicaNet, 5

SDL, 6
Standard Template Library, 23-27
Torque, 6-7

GarageGames, 6

gDEBugger tool, 366-367
generalization relationship, UML, 37-38
genre, game, 47-48
geometry

Fixed Function Geometry Pipeline, 90-92
rendering, 238-239
in rigid body collisions, 237-238
in scene management, see scene geometry

Gg (C for Graphics) shading language, 319
Gimbal lock, 106-107
GL_LINES, 123-124
GL_POINTS, 123-124
GL_QUADS, 123-124
GL_TRIANGE_STRIP, 123-124
GL_TRIANGLES, 123-124
glaux, 129

glBindTexture function, 131
glBlendFunc method, 155
glDeleteLists function, 135-136
glDisable command, 122
glEnable command, 122
glGenLists function, 135-136
glGenTextures function, 131
glGetExtensions function, 158-159
gINewList function, 135-136
glPopAttrib method, 123
glPopMatrix function, 95
glPushAttrib method, 123
glPushMatrix function, 95
GLSL (OpenGL Shading Language), 317-333

adding shader supportto project, 349
built-in types, 322-323

chapter exercises, 332

creating shader program, 328-329
data types, 321

fragment processor, 321

history of shading languages, 318-319
language syntax, 323-325
loading shader source, 327-328
overview of, 319-320
rendering with shaders, 330-331
shader info log, 329
shader inputs and outputs, 322
shader object cleanup, 331
shader support with extension querying, 325-327
shader validation with GLSLValidate, 331-332
uniform and attribute variables, 330-331
vertex processor, 320

GLSLvalidate, 331-332
GLSL Validator, 367
GPL (GNU public license), 2, 5-6
GPU (Graphics Processing Unit), 318

graphical user interface (GUI), 15-16, 187-188
graphics programming, mathematics, 89-109

basic camera/view orientation, 103-108
Cartesian Coordinate System, 89-90
chapter exercises, 109
Fixed Function Geometry Pipeline, 90-92
matrices, 95

OpenGL matrix stacks, see OpenGL (Open
Graphics Library), matrix stacks

vectors, 92-94
GraphicsResourceManager, 185

graphics timebox, 183-189
ActiveState, 188

chapter exercises, 189

defined, 50

evaluating, 188-189
LogoState, 184

MainMenuState, 184-188
requirements, 183-184

graphs, scene
overview of, 171-173
Peon, 173-176
web site resources for, 377

GUI (graphical user interface), 15-16, 187-188

H
hardcore gamers, 49
“Hello World” application, SDL, 56-59

Index 383

hidden surface removal, 166

hierarchy structure, of scene graphs, 170-173
High Level Shading Language (HLSL), 318-319
HLSL (High Level Shading Language), 318-319
homogenous coordinates, matrix concatenation,

102-103
horizontal (x) axis, Cartesian Coordinate System, 90

host, in peer-to-peer architecture, 242

I

IApplication, 83

IApplicationState
adding input support to Peon, 198-200
creating new instances of, 84-86
defined, 83

ICDS (Installable Client Drivers), OpenGL, 112-113
icons, creating, 20-21
identity matrix, 96
immediate mode API, OpenGL, 122

indices, vertex arrays, 156
INFO level messages, FileLogger, 67

InfoLog, 329
INI files, 67-69
initialization

CEGUI library, 188
design phase, 44-45
joystick, 195

Lua, 338-339
OpenAL, 209
SDL, 60-62
SDL_NET TCP client, 252

SDL.NET TCP server, 250
shockwaves, 309-310
Windows files, 67-69

InnoSetup, 16-22
application directory information, 19-20
application documentation and compiler settings,

21-22
application files, 20

application information, 18-19
creating installation script, 354-356
icon configuration, 20-21
launching Compiler, 18
overview of, 16-17
sample script, 17

input
shader, 322

user, 352

384 Index

input and sound timebox, 50

input devices, SDL, 191-200
adding to Peon, 198-200
chapter exercises, 200
cleaning up joystick, 198

joystick enumeration, 195-196
opening joystick, 196
overview of, 191-192
processing joystick events, 196-198
using joystick, 195

using keyboard, 192-193
using mouse, 193-195

Installable Client Drivers (ICDS), OpenGL, 112-113
installation

for beta testing or public, 354-356
CD-ROM, accompanying book, 374
SDL (Simple DirectMedia Layer), 363

installer tools, InnoSetup, see InnoSetup
IP addresses

preparing server for client connections, 250
SDL_NET TCP client, 252

ISceneNode, 173-174
ISGNode entity, billboard animation, 305
iterative design process, 31-33
IUnkown, 70-73

J

join requests, ReplicaNet, 267
joystick, 195-198

K

keyboard
testing for strange key mappings, 352

using, 192-193
key-frames, 280

L

layers, sound, 202-203
left-handed coordinates, Cartesian, 90

left-to-right rule, graphics programming, 103
LGPL (Lesser GNU public license), 2, 5

licenses
checking restrictions on, 273

common, 1-3
lacking in MD3 model format, 280
specifying for your game, 20-21
web site resources, 375

lighting system, OpenGL, 147-154

adding light support to SceneRenderer, 150-152
defining surface normals, 149-150
implementing light support in SceneRenderer,

152-153
“overview of, 147-149
sample demonstration, 154

lightweight principles, Agile design, 32
linear mode, fog effects, 144
listener object, OpenAL, 209, 212-213
loadDevice method, SceneRenderer, 116-118
loadEngineCore method, Windows initialization, 68

loadEngine method, EngineCore, 61-62
loading, shader source, 327-328
loadtime linking, in DDL, 74

logging
shader InfoLog, 329
using FileLogger, 65-67

logo bitmap, SDL, 59

LogoState, 84-86, 184
lookat vector, view transformation, 104
lua_close method, 337-338
lua_dofile function, 340
lua_dostring method, 338-339
Lua scripting

adding to project, 348

calling function in, 342-343
chapter exercises, 345

positioning objects with, 343-344
scripting with, 336-339
simple script using, 339-340
using Luac, 341-343

M
magnitude

quaternion, 107

vector, 93

MainMenuState, 184-188
creating GUI, 187
defined, 84

initializing CEGUI library, 188

loading common data, 185-186
overview of, 184

rendering starfield, 186

rendering text to player, 187
market research, 49-50
materials, lighting, 148

mathematics, in GLSL syntax, 324
mathematics, in graphics programming, 89-109

basic camera/view orientation, 103-108
Cartesian Coordinate System, 89-90
chapter exercises, 109
Fixed Function Geometry Pipeline, 90-92
matrices, 95

OpenGL matrix stacks, see OpenGL (Open
Graphics Library), matrix stacks

vectors, 92-94
matrices

OpenGL matrix stacks, see OpenGL (Open
Graphics Library), matrix stacks

overview of, 95
view transformation, see camera/view orientation

matrix data types, GLSL, 324
matrix stacks, OpenGL, 95-103

coordinate transformations, 99-102
identity matrix, 96

matrix addition and subtraction, 97-98
matrix concatenation, 102-103
matrix multiplication, 98
overview of, 95-96
rotation transform, 100-102
scaling transform, 99
translation transform, 99-100

MD3 file format, 279-284
mesh, defined, 271

MeshFactory, 272-273
message types, ReplicaNet, 266
Microsoft; see also Windows
Microsoft, XNA initiative, 4
Microsoft Visual Studio 6.0, running SDL, 363-364
Microsoft Visual Studio.NET 2003, 364
Microsoft Visual Studio.NET 2005 (Beta 2), 364
middleware, DirectPlay as, 245-246
MIDI (Musical Instrument Device Interface),

203-204
milestones, project, 31

Milkshape3D, 273
minus (-), UML, 35

mipmapping, 131, 132

Mix_Music data structure, 205-206
models, 271-285

AnimatedMeshFactory, 284
animation, 279-280
chapter exercises, 285
creating 3DS importer, 273-279
generating, 271-272
MD3 file format, 280-284

385Index

updating MeshFactory in Peon, 272-273
using Collada, 284-285

modelview matrix stack, 95

mouse, 193-195, 294-298
multiplication

matrix, 98

using quaternions with, 108

multitexturing, 160-162
Musical Instrument Device Interface (MIDI),

203-204

N
NAT (Network Address Translation), 260
neSimulator, 235-237, 238
NetStream object, ReplicaNet, 265-266
Network Address Translation (NAT), 260
NetworkEngine, 81
networking, 241-262

chapter exercises, 261-262
client-server, 243
client-server prediction/authentication, 261

DirectPlay vs. Winsock, 245-246
Network Address Translation, 260
non-blocking sockets, 254
overview of, 241-242
peer-to-peer, 242-243
SDL_NET, 246-247
sending and receiving data, 253-254
starting basic client, 250-252
starting basic server, 247-250
TCP/IP vs. UDP, 244-245, 259
using SDLNet_CheckSockets, 254-258
web site resources, 377

networking timebox, 263-269
chapter exercises, 269
defined, 50

evaluating, 268

making additions to Peon, 265-266
network topology design, 264
overview of, 264-265
ReplicaNet, 263-264
updating players, 266-268

network protocols
choosing TCP/IP vs. UDP, 244-245, 259
DirectPlay vs. Winsock, 245-246

network topology
defined, 242
timebox, 264

386 Index

non-blocking sockets, vs. blocking, 254
normal information, vertex arrays, 156
normalization, vector, 93
normal vectors

defined, 93

quaternions, 107
used in lighting pipeline, 149-150

note notation, UML, 35
NVidia, 319

0
object factory pattern, 39-40
Object-Oriented Graphics Rendering Engine

(OGRE), 4

objects
picking/selection, 294-298

positioning using Lua, 343-344
in project files, 13-14
relationships between, in UML, 35-37

occluder query, 177-179
Occlusion Query algorithm, 179-180
octree data structure, 176-180

building octree, 177
occluder query, 177-179
Occlusion Query algorithm, 179-180

ogg buffer, playing, 216
OGG-Vorbis, 204, 214-216
OGRE (Object-Oriented Graphics Rendering En-

gine), 4
onLoadWorld method, 185

onRender method, 186-187
onUnload method, 3DS, 279
OpenAL, 208-214

chapter exercises, 216-217
initializing device context, 209
loading sound effects, 209-210
overview of, 4-5, 208-209
playing OGG-Vorbis data with, 214-216
playing sound, 213

positioning listener object, 212-213
shutting down, 213-214
stopping sound, 213

working with source object, 210-212
OpenGL (Open Graphics Library), 111-145

alpha-blending and transparencies, 154-155
architecture, 113-114

basic texture mapping, 129-135

cathode ray tube monitors and phosphors,
119-122

chapter exercises, 144-145, 162-163
extension mechanism, 158-160

“Installable Client Drivers and, 112-113
lighting system, see lighting system, OpenGL
loading OpenGL device using SDL, 116-118
multitexturing, 160-162
overview of, 111-112
rendering primitives, 123-125
rendering simple cube, 140-142
rendering text, 135

rendering vertices with SceneRenderer, 125-128
SceneRenderer interface, 114-115
state machine for, 122-123
using display lists, 135-140
vertex arrays, 156-158
web site resources, 375
Windows Vista and, 371-372
working with fog effects, 143-144
working with surfaces, 118-119

OpenGL (Open Graphics Library), matrix stacks,
95-103
coordinate transformations, 99-102
identity matrix, 96
matrix addition and subtraction, 97-98
matrix concatenation, 102-103
matrix multiplication, 98
overview of, 95-96
rotation transform, 100-102
scaling transform, 99
translation transform, 99-100

OpenGL Shading Language, see GLSL (OpenGL
Shading Language)

operations, built-in GLSL, 324-325
orthographic projection, FFGP, 92, 105

OutputDebugString, 365-366
outputs, shader, 322

P
packet loss, 244
packet ordering, 244
packets, 244
ParticleEmitter, 81

particle systems, 298-304
creating and defining, 298-300
defining, 298-300
point sprit extension querying, 302-304

rendering emitter, 301-302
updating emitter, 300-301

passes, scene graph, 175

patch mechanism, 356
PCM (Pulse Code Modulation), 209
peer-to-peer networking

creating networking timebox, see networking
timebox

overview of, 242-243
PeonDLLHeader, 74
Peon engine, 77-87

adding input support to, 198-200
additions for networking timebox, 265-266
basic structure, 77-79
chapter exercises, 86-87
components, 80-82
creating new instances of IApplicationState,

84-86
LGPL license for, 2

managing state information, 82-83
overview of, 79-80
timebox evaluation, 86

updating MeshFactory in, 272-273
using right-handed Cartesian coordinates, 90

working on first timebox, 83-84
Peon scene graph, 173-176
performance

effective collision detection and, 227
full-screen mode increasing, 118

perspective projections, FFGP, 91-92, 104-105
phosphors, 119-122
physics, 234-240

cleaning up, 239
overview of, 234-235
rendering geometry, 238-239
running simulation with Tokamak, 238

using neSimulator, 235-237
working with geometry, 237-238

picking, 294-298
pipelines

asset, 271-272
Fixed Function Geometry Pipeline, 90-92
OpenGL, 113-114

pixelformat, 118

pixel shaders (fragment processor), GLSL, 319, 321

plane collisions
overview of, 231-232
ray collisions vs., 233-234

Index 387

Platform genre, 48
playback, sound effects, 207-208
players

adding forward movement, 222

creating user instruction manual, 357-358
rotating, 221-222
updating for networking timebox, 266-268

plus (+), UML, 35
point sprit extension querying, 302-304
polish timebox, 347-350
Popcap framework, 5

ports, preparing server, 250
positive transfer, 17

pound (#), UML, 35

prediction, client, 261

primary surface (front buffer), 118

primitives, rendering, 123-125
printing text, 139

private declaration, UML, 35
Process Phase, 45-46
Projection Transformation stage, FFGP, 91, 104-105
project matrix stack, 95

project overview, 47
protected declaration, 35

public declaration, UML, 35
publisher-subscriber pattern, 42-43

Pulse Code Modulation (PCM), 209
Puzzle genre, 48

Q
QA (quality assurance) tests, 356
QBasic syntax, 3

Quake? and Quake3, 5-6
quaternions, 107-108
QuitGameState, 84

R

RakNet, 5

ray collision, 232-234
README file, 3

Real-Time genre, 47
receiving data, client-servers, 253-254
reference counting

COM technology, 70

IUnkown, 71-73
refresh rate, CRT display, 119-122
registered versions, vs. demo, 52

registration mechanism, 359-360

388 Index

relationships, UML, 35-37
Reliable message types, ReplicaNet, 266
reliable-UDP, 259
rendering

3DS data, 277-279
background starfield, 186-187
billboard animation, 290-291
geometry, in collision detection, 238-239
OpenGL pipeline, 113-114
particle systems emitters, 301-302
phase, 45-46
primitives, 123-125
rigid body effects, 235
with shaders, 330-331
shockwaves, 311-312
simple cubes, 140-142
text, 135

text to player, 187

using scene graphs with, 172
vertices with SceneRenderer, 125-128

ReplicaNet
creating networking timebox, see networking

timebox
defined, 264
overview of, 5

repository
creating CVS, 8-9
creating SuperAsteroidArena game using, 9-11

resources, see web site resources
reusability, code, 38

reusability, designing, 38-44
reusability, of design patterns

facade pattern, 43-44
object factory, 39-40
publisher-subscriber, 42-43

singleton, 40-42
right-handed coordinates, Cartesian, 90

rigid body collisions, see physics
risk, Agile methods and, 33

roles, project, 51

root node, Peon scene graphs, 174-175
rotation, player, 221-222
rotation transform, 100-102
runEngine method, EngineCore, 62-64
RunState, 84
runtime linking, in DDL, 74

runtime phases, 44-46

S

sampling rate, 202

saving, OpenGL state manipulation, 122-123
scaling transform, 99

scancode, key event messages, 193
SceneCamera object, 105-106
SceneFont

defined,81
overview of, 138-139
printing text with, 139

rendering text with, 138

scene geometry, 165-181
basic hierarchy, 170-173
Binary Space Partitioning trees, 176

chapter exercises, 180-181
depth buffer, 166

octree data structure, 176-180
Peon scene graph, 173-176
View Frustum culling, 166-170

SceneGraphManager, 81
scene graphs

overview of, 171-173
Peon, 173-176
web site resources for, 377

SceneLight file, 150-152
SceneRenderer

adding light support to, 150-152
defined, 81

implementing light support in, 152-153
overview of, 114-115
rendering primitives with, 123-125
rendering vertices with, 125-128

SceneRoot, 174-175
SceneTexture

creating OpenGL texture, 129-132
defined, 81

using, 133-135
schedule, setting project, 31

screen shots, 312-314
ScriptEngine, 81

scripting, see Lua scripting
SDL (Simple DirectMedia Layer), 55-75

adding FileLogger, 65-67
chapter exercises, 74-75
cleaning up, 64
COM technology, 69-71
creating EngineCore, 60-61

Endian issues, 65
“Hello World” application, 56-59
initializing, 61-62
input devices using, see input devices, SDL
installing, 363

loading OpenGL device using, 116-118
overview of, 6, 55-56
using Dynamically Linked Libraries, 73-74
using instead of DirectX, 56

using I[Unkown, 71-73
using LGPL license for, 2

using Windows initialization files, 67-69
web site resources, 376
Windows event queue, 62-64

SDL_GL_GetProcAddress method, 159

SDL_Image, 129-130
SDL_INIT function, 61-62
SDL_Mixer, 205-206

introduction to, 203

soundeffect playback, 207-208
working with audio music data, 203-206

SDL_NET
CheckSockets, 254-258
non-blocking sockets, 254
overview of, 246-247
sending and receiving data, 253-254
TCP server, 247-252

SDL_Quit function, EngineCore, 64
secondary surface (back buffer), 118
selection buffer, 294-298
sending data, client-servers, 253

servers
in client-server architecture, 243

preparing for client connections, 247-250
sending and receiving data, 253-254

ShaderEngine, 349

shading languages, 318-319
shockwave, 81, 308-312
shutting down, OpenAL, 213-214
Simple DirectMedia Layer, see SDL (Simple Direct-

Media Layer)
singleton pattern, design reusability, 40-42
skin name, MD3 model format, 283
skyboxes, 291-294
software, game requirements, 374

sound, 201-208
digitized, 202

layers, 202-203

Index 389

mechanics, 201-202
playback, 207-208
timebox, see timebox, input and sound
using SDL_Mixer, 203

working with audio effects data, 206-207
working with audio music data, 203-206

sound, OpenAL, 208-214
chapter exercises, 216-217
initializing device context, 209
loading sound effects, 209-210
overview of, 208-209
playing OGG-Vorbis data with, 214-216
playing sound, 213

positioning listener object, 212-213
shutting down, 213-214
stopping sound, 213

working with source object, 210-212
source, in alpha blending, 154

source object, OpenAL, 208, 210-212
special effects, 287-315

billboard animation, 287-291, 305-307
chapter exercises, 314
object picking/selection, 294-298
particle systems, 298-304
screen shots, 312-314
shockwaves, 308-312
skyboxes, 291-294
timebox, 50

specular lighting, 148

speech layer, 203

speed, collision detection and, 227-231
spiral design process, 31-33
sprite animation, 287
Standard Template Library, see STL (Standard Tem-

plate Library)
starfield, rendering, 186-187
states

MainMenuState, see MainMenuState
managing information, 82-83
OpenGL, 122-123
scene graph, 175

SuperAsteroidArena project, 84
transition effects for, 352

std::map template, 25-26
std::string template, 23-24
std::vector template, 24-25
STL (Standard Template Library), 23-27

running SDL with Studio 6.0, 364

390 Index

std::map template, 25-26
std::string template, 23-24
std::vector template, 24-25
using STLPort libraries, 27

STLPort libraries, 27
stopping sound, OpenAL, 213

strategy genre, 47

streaming protocols, 244
subtraction, matrix, 97-98
SuperAsteroidArena project, 9-22

adding graphics timeboxes, see graphics timebox
checking out objects, 13-14
designing, 46-50
overview of, 9-11
using InnoSetup, see InnoSetup
working on first timebox, 83-84
working with Doxygen, 14-16
working with project files, 11-13

surface normals, in OpenGL lighting, 149

surfaces, OpenGL
creating, 116-118
CRT phosphor display, 119-122
working with, 118-119

survey questions, gameplay, 353

syntax, GLSL, 323-325
system fonts, 135

system requirements, user manual, 358, 374

T

tag information, MD3 model format, 282

TCP/IP (Transmission Control Protocol/Internet
Protocol)
preparing serverfor client connections using,

247-250
sending and receiving data, 253-254
starting basic client, 250-252
vs. UDP, 244-245
vs.UDP, 259

TCP packet header, 244-245
tearing, preventing, 120

technical support
from author’s website, 374
user manual with, 357

technologies, game, see game technologies
tests

in Agile design method, 33

beta, 356
bounding sphere with plane, 170

game play, 353

quality assurance, 356
for strange key mappings, 352

texels, defined, 129

text
rendering, 135

rendering to player, 187

rendering with OpenGL displaylists, 135-140
texture bitmapped fonts, 135-138
texture coordinates, 156, 283
texture mapping

creating OpenGL texture, 129-132
multitexturing, 160-162
overview of, 129

using SceneTexture, 133-135
using texture map, 133

texture matrix stack, 95

textures, generating models from, 271
texture units, in multitexturing, 160-162
third-party software

Collada modeling as, 284-285
compression/encryption using, 359

3DS importer, 273-279
cleaning up, 279
loading data, 276-277
overview of, 273-276
rendering data, 277-279

timebox
drafting initial list for, 50-51
evaluating, 86

polish, 347-350
used in Agile design method, 32-33
working on first, 83-84

timebox, graphics, 183-189
ActiveState, 188

chapter exercises, 189

defined, 50

evaluating, 188-189
LogoState, 184

MainMenuState, 184-188
requirements, 183-184

timebox, input and sound, 219-226
chapter exercises, 226

evaluating, 226
required input events, 220-222
requirements, 219-220
using AudioEngine, 223-226

timebox, networking, 263-269

chapter exercises, 269
evaluating, 268

making additions to Peon, 265-266
network topology design, 264
overview of, 264-265
ReplicaNet, 263-264
updating players, 266-268

timeline, project, 31
Tokamak physics library, 235-240

chapter exercises, 240
cleaning up, 239
rendering geometry, 238-239
running simulation, 238

using neSimulator, 235-237
working with geometry, 237-238

Torque, 6-7
TortoiseCVS GUI, 9-11
transition effects, game state, 352
translation transform, 99-100
Transmission Control Protocol/Internet Protocol,

see TCP/IP (Transmission Control Protocol/
‘Internet Protocol)

transparencies, 154-155
traversal, scene graph, 176
Turn Based genre, 47

type safe, GLSL, 323

u
UDP (User Datagram Protocol)

choosing TCP/IP vs., 244-245
creating networking timebox, see networking

timebox
reliable, 259

UML (Unified Modeling Language), 33-38
class notation, 34
class relationships, 35-37
comment/note notation, 35
generalization relationship, 37-38
overview of, 33-34
visibility notation, 34-35

Unified Modeling Language, see UML (Unified
Modeling Language)

uniform types, built in shader, 323
uniform variables, GLSL, 322, 329
Unix, 7-10
unloadDevice, SceneRenderer, 122
unloadEngine method, EngineCore, 64
updating

Index 391

code, using Doxygen, 14-16
creating mechanism for, 356
frames for billboard animation, 307
instances of [ApplicationState, 85-86
MeshFactory in Peon, 272-273
object positions using Lua, 344
particle systems emitter, 300-301
phase, 45-46
players, 266-268
shockwaves, 310-311

up vector,view transformation, 104
User Datagram Protocol, see UDP (User Datagram

Protocol)
user instruction manuals, 357-358

Vv

validation
GLSL Validator tool, 367
shader, 331-332

variant data type, Lua, 341

varying variables, GLSL, 322
vector data types, GLSL, 324
vectors

extracting for billboarding, 288-290
overview of, 92-94
view transformation matrix, 103

vertex processor, GLSL, 320
vertex shaders, GLSL, 319, 320
vertical (y) axis, Cartesian Coordinate System, 90
vertical retrace period, 120
vertices

generating models from, 271
MD3 model format, 283

rendering with SceneRenderer, 125-128
vertex arrays, 156-158

video settings, 353
View Frustum culling, 166-170
view matrix, and billboarding, 288
view orientation, see camera/view orientation
view transformation, FFGP, 91, 103-104
visibility notation, UML, 34-35
visual feedback, finishing tips, 352
VS1.0 vertex shader,for DirectX8.0, 318

w
waterfall software design

iterative design vs., 31-33
overview of, 30-31

392 Index

web site resources, 374-378
Agile, 377
audio programming, 376
author’s website, 374
DirectX, 376
game design, 376-377
game portalsites, 378
licenses, 375

networking, 377
OpenGL, 375

scene graphs, 377
SDL, 376

windows, generating with SDL, 59
Windows Vista, 4, 371-372
Windows XP, 4
Winsock, 246

world transformations, FFGP, 91
WSA prefix, 246

X

x (horizontal) axis, Cartesian Coordinate System, 90
XNA initiative, 4

Y
Welcome Wizard dialog, InnoSetup, 18
windowed mode, 118
Windows

Registry, 67 z (depth) axis, Cartesian Coordinate System, 90
SDL event queue, 62-64
using COM technology, 69-71
using initialization files, 67-69

y (vertical) axis, Cartesian Coordinate System, 90

