GAME PROGRAMMING
IN C++:
START TO FINISH

Erik YuzwA

CHARLES RIVER MEDIA
Boston, Massachusetts

Copyright 2006 Career & Professional Group, a division of Thomson Learning Inc.
Published by Charles River Media, an imprint of Thomson Learning Inc.
All rights reserved.

No part of this publication may be reproduced in any way, stored in a retrieval system of any type, or
transmitted by any means or media, electronic or mechanical, including, but not limited to, photocopy,
recording, or scanning, without prior permission in writing from the publisher.

Cover Design: Tyler Creative

CHARLES RIVER MEDIA

25 Thomson Place

Boston, Massachusetts 02210
617-757-7900

617-757-7969 (FAX)
crm.info@thomson.com
www.charlesriver.com

This book is printed on acid-free paper.

Erik Yuzwa. Game Programming in C++: Start to Finish
ISBN: 1-58450-432-3

All brand names and product names mentioned in this book are trademarks or service marks of their
respective companies. Any omission or misuse (of any kind) of service marks or trademarks should not
be regarded as intent to infringe on the property of others. The publisher recognizes and respects all
marks used by companies, manufacturers, and developers as a means to distinguish their products.

Library of Congress Cataloging-in-Publication Data

Yuzwa, Erik.
Game programming in C++ : start to finish / Erik Yuzwa.
p. cm.
Includes index.
ISBN 1-58450-432-3 (pbk. with cd : alk. paper)
1. Computer games—Programming. 2. C++ (Computer program language) I. Title.

QA76.76.C672Y98 2005
005.13’3—dc22
2005032754

Printed in the United States of America
06765432

CHARLES RIVER MEDIA titles are available for site license or bulk purchase by institutions, user
groups, corporations, etc. For additional information, please contact the Special Sales Department
at 800-347-7707.

Requests for replacement of a defective CD-ROM must be accompanied by the original disc, your
mailing address, telephone number, date of purchase and purchase price. Please state the nature of
the problem, and send the information to CHARLES RivER MEDIA, 25 Thomson Place, Boston,
Massachusetts 02210. CRM’s sole obligation to the purchaser is to replace the disc, based on defective
materials or faulty workmanship, but not on the operation or functionality of the product.

&

e

Contents

Acknowledgments
Preface

1 Game Technologies -

Common License Agreements

Some Helpful Technologies
Concurrent Versioning System (CVS)
Using CVS

Creating the SuperAsteroidArena Project
Introduction to Doxygen
Introduction to InnoSetup

The Standard Template Library
std::string
std::vector
std::map

Chapter Exercises

Summary

2 Design Fundamentals
What Is a Game Design?
Classic Waterfall Software Design
Iterative Software Design
Principles of Agile Design
When to Use Agile :
Introduction to the Unified Modeling Language

Basic Class Notation

XiX

O O N W o~

16
23
23
24
25
27
27

29
29
30
31
32
33
33
34

vi Contents

Visibility Notation
Comment/Note Notation
Modeling Class Relationships
Generalization Relationship
Software Reusability
Code Reuse
Design Reuse
Anatomy of a Game
Initialization Phase
Process Phase
Destruction Phase
The SuperAsteroidArena Design Document
Drafting a Project Overview
What Type or Genre of Game Is It?
Who Is Your Audience?
Why Make the Game?
What Do You Want To See?
What Does It Offer?
Draft an Initial List of Timeboxes
Who Is Involved?
Budget Concerns
Demo versus Registered Features
Chapter Exercises

Summary

3 Introduction to SDL and Windows
Introduction to the Simple DirectMedia Layer
Why Use SDL Instead of DirectX?
SDL “Hello World”
Creating the EngineCore
Initializing SDL
The SDL/Windows Event Queue

35
35
36
37
38
38
38
44
44
45
46
46
46
47
48
49
49
49
50
51
51
52
33
53

9%
55
56
56
60
61
62

Cleaning Up SDL
Big Endian versus Little Endian
Adding the FileLogger
Using Windows Initialization Files
The Component Object Model
The 1unknown Object
Introduction to Dynamically Linked Libraries
Chapter Exercises

Summary

4 Introduction to the Peon Engine

Basic Engine Structure

Introduction to Peon

Introduction to Some Peon Components

Building Upon the Foundation
Managing State Information
Working on the First Timebox
Creating the New Instances of IApplicationState
Timebox Evaluation

Chapter Exercises

Summary

5 Graphics Programming Mathematics

The Cartesian Coordinate System
Fixed Function Geometry Pipeline
Introduction to Vectors

Common Vector Operations
Introduction to Matrices
The OpenGL Matrix Stacks

Identity Matrix

Matrix Addition and Subtraction

Contents

77
77
79
80
82
82
83
85
86
86
87

89
89
90
92
93
95
95
96
97

Contents

Matrix Multiplication 98
Coordinate Transformations 99
Scaling Transform 99
Translation Transform ‘ 99
Rotation Transform 100
Matrix Concatenation 102
Basic Camera/View Orientation 103
Projection Transformations 104
Create a Basic Camera 105
Gimbal Lock 106
Quaternions : 107
Basic Quaternion Algorithm 108
Chapter Exercises 109
Summary 109
6 Creating an OpenGL Renderer 111
How Does OpenGL Operate? 112
OpenGL and Installable Client Drivers (ICDs) 112
Understanding the OpenGL Architecture 113
Defining the SceneRenderer 114
Loading the OpenGL Device Using SDL 116
Working with OpenGL Surfaces 118
Cathode Ray Tube Monitors and Phosphors 119
Clearing the Device 120
Flipping the Device 121
Unloading the Device 121
The OpenGL State Machine 122
Saving and Restoring State Information 122
Rendering Primitives 123
Rendering Vertices with the SceneRenderer 125

Contents ix

Texture Mapping 129
Creating an OpenGL Texture 129
Using the Texture Map 133
Using the SceneTexture 133

Rendering Text 135

OpenGL Display Lists 135
Storing the Font Characters 136
The SceneFont in Action 138
Printing Text 139
Cleaning Up 139

Rendering a Simple Cube 140
Moving the Cube 142
Rendering the Cube ' 142

Working with Fog 143
BasicFog Demo 144

Chapter Exercises 144

Summary 145

7 More OpenGL Techniques 147

Lighting and Materials 147
Defining Surface Normals 149
Adding Light Support to the SceneRend‘erer 150
Implementing Light Support in SceneRenderer 152
Sample Demonstration 154

Alpha-Blending and Transparencies 154
Sample Demonstration 155

Vertex Arrays 156

The OpenGL Extension Mechanism 158

Multitexturing 160

Contents

Working with the Texture Units 161
Chapter Exercises 162
Summary 163

8 Scene Geometry Management 165

The Depth Buffer 166

View Frustum Culling 166

Basic Scene Hierarchy Management 170

Sorting Rendering States 172

Animation Rendering 172
Introduction to the Peon Scene Graph 173

Scene Graph States 175

Scene Graph Passes 175

Scene Graph Traversal 176
Binary Space Partitioning Trees 176
Octree Data Structure 176

Building Your Octree 177

The Occluder Query 177

Occlusion Query Algorithm 179

Cleanup 180
Chapter Exercises 180
Summary 181

9 Graphics Timebox 183
Timebox Requirements _ 183

The LogoState 184

The Mainmenustate 184
Loading Common Data 185

Rendering the Starfield 186

Rendering Text to the Player
Creating the Graphical User Interface
The ActiveState
Timebox Evaluation
Chapter Exercises

Summary

10 Working with Input Devices

Introduction to Input Using SDL
Using the Keyboard
Using the Mouse
Using the Joystick
Joystick Enumeration
Opening a Joystick
Processing Joystick Events
Cleaning up the Joystick
Adding Input Support to Peon
Chapter Exercises

Summary

Working With Sound
Sound Mechanics
Digitized Sound
Sound Layers
Introduction to SDL_Mixer
Working with Audio Music Data
Cleaning Up
Working with Audio Sound Effects Data
Sound Effect Playback
Cleaning Up

xi

187
187
188
188
189
189

191
191
192
193
195
195
196
196
198
198
200
200

201
201
202
202
203
203
206
206
207
208

Contents

Introduction to OpenAL
Intializing the OpenAL Device Context
Loading Sound Effects
Working with the Source Object
Positioning the Listener Object
Playing the Sound
Stopping the Sound
Shutting Down the OpenAL Context
Playing Ogg-Vorbis Data with OpenAL
Playing the Ogg Buffer
Chapter Exercises V

Summary

12 Input and Sound Timebox
Timebox Requirements
Required Input Events

Rotating the Player’s Ship
Activating the Player’s Engines
Using the AudioEngine
Loading Sounds
Playing Sounds
Unloading Sounds
Timebox Evaluation
Chapter Exercises

Summary

13 Collision Detection and Physics Techniques
Prioritize Speed
Axis-Aligned Bounding Box Detection
Bounding Sphere Collision Detection

208
209
209
210
212
213
213
213
214
216
216
217

219
219
220
221
222
223
224
225
225
226
226
226

227
227
228
230

Contents Xiii

Plane Collisions 231
Collision of Plane versus AABB 232
Ray Collisions 232
Collision of Plane versus Ray 233
Implementing Physics 234
Using the neSimulator 235
Working with Geometry 237
Running the Simulation with Tokamak 238
Rendering the Geometry 238
Cleaning Up 239
Chapter Exercises 240
Summary 240
14 Introduction to Networking 241
Networking Basics 241
Peer-to-Peer 242
Client-Server 243
TCP versus UDP 244
DirectPlay and Winsock 245
SDL_Net 246
Starting a Basic Server 247
Starting a Basic Client ‘ 250
Sending and Receiving Data 253
Non-Blocking Sockets 254
Using SDLNet_CheckSockets 254
TCP/IP versus UDP (Part II) 259
Network Address Translation 260
Client-Server Prediction/Authentication 261
Dead-Reckoning : 261
Chapter Exercises 261

Summary 262

xiv Contents

15 Networking Timebox 263
Introduction to ReplicaNet 263
Network Topology Design 264
Networking Timebox : 264

Making Additions to Peon 265
Creating the NetStream Object 265

Working with Message Types 266

Updating Players 266

Session Hosting/Joining 267

Players Tend to Move Around 268

Players Want to Fire 268

Timebox Evaluation 268
Chapter Exercises 269
Summary 269

16 Introduction to Models 271
Model Generation 271
Updating the MeshFactory in Peon 272
Creating a 3DS Importer 273
Loading the 3DS Model Data : 276
Rendering the Model 277

Cleaning Up ‘ 279

Model Animation 279

The MD3 File Format 280

The AnimatedMeshFactory 284
Introduction to Collada 284
Chapter Exercises 285
Summary 285

17 Animation and Special Effects 287
Billboarding 287

Understanding the View Matrix (Recap) 288

Contents

Extracting the Vectors
Skyboxes (Environment Mapping)
Object Picking/Selection
Particle Systems

Updating the Emitter

Rendering the Emitter

Particle System II: Point Sprites
Billboard Animation

Loading New Frames

Updating Frames
Creating a Shockwave

Initializing the Shockwave

Updating the Shockwave

Rendering the Shockwave
Taking a Screen Shot
Chapter Exercises

Summary

18 Introduction to the OpenGL Shading Language (GLSL)

Some History of Shading Languages
Cg
The OpenGL Shading Language (GLSL)
The Vertex Processor
The Fragment Processor
GLSL Data Types
Shader Inputs and Outputs
Built-In Types
OpenGL Shading Language Syntax
Checking for Shader Support
Loading the Shader Source
Creating a Shader Program
The Shader InfoLog

XV

288
291
294
298
300
301
302
305
306
307 -
308
309
310
311
312
314
315

317
318
319
319
320
321
321
322
322
323
325
327
328
329

Xvi Contents

Uniform and Attribute Variables 330
Rendering with Shaders 330

Shader Object Cleanup 331

Shader Validation Using GLSLvalidate 331
Chapter Exercises 332
Summary 333

19 Introduction to Scripting 535
Introduction to Scripting 335
Introduction to Lua 336

Using the Interpreter 338

A Simple Script 339

A Simple Script File 340
Introducing Luac 341

Lua Stack 341

Calling a Lua Function 342

Using Lua to Position Objects 343

. Updating the Object Position 344

Chapter Exercises 345
Summary 345

20 Polish Timebox 347
Timebox Goals 347
Adding Scripting Support 348
Adding Shader Support 349
Timebox Evaluation 350
Chapter Exercises 350
Summary 350

21 Finishing Tips and Tricks 351
Simple Suggestions 351

Game Play Testing 353

Contents

Installation Scripts

Using InnoSetup
Beta Testing or Quality Assurance Testing
User Instruction Manual

User Manual Checklist
Game Asset Compression/Encryption
Registration/Patch/Updating Mechanism
Final Things to Remember
Chapter Exercises

Summary

Appendix A Setting Up the SDL and the Compiler
Installing SDL
Microsoft Visual Studio 6.0
Microsoft Visual Studio .NET 2003
Microsoft Visual Studio .NET 2005 (Beta 2)

Appendix B Debugging Tools
OutputDebugString
Assert
gDEBugger
GLSL Validation Tool

Appendix C ASCII Table
Appendix D Windows Vista and OpenGL

Appendix E About the CD-ROM
Required Software
System Requirements
Installation

Author Support

354
354
356
357
358
359
359
360
361
361

363
363
363
364
364

365
365
366
366
367

369

371

373
374
374
374
374

xviii Contents

Appendix F Further Resources 375
License Specific 375
OpenGL Specific 4 375
SDL Specific 376
DirectX Specific 376
Audio Programming 376
Game Design 376
Network Programming 377
Scene Graphs 377
Agile Specific 377
Game Portal Sites \ 378

Index 379

Acknowledgments

here to begin on something like this? This project would not have hap-
Wpened without the help and assistance of many individuals. I really thank

God for blessing my life thus far and presenting many wonderful oppor-
tunities for me to explore. Although I've taken many risks of my own through this
life, He’s been helping out on the other end to provide some light on my journey.

A special “I love you” to my beautiful wife, Eliza, and our two sons, Noah and
Isaac. Although I was able to get most of this book done after everyone went to bed,
there was still the occasional weekend that was eaten up with me attached to the
machine. Thanks to all of you who sacrificed our time together. To Noah, who in-
sisted on keeping me company on some nights by teaching me the mambo thanks
to his favorite show, Dora the Explorer, and to Isaac, who loves to stuff his face and
call everything “nana” (banana).

To my mom, dad, and sister who've put up with me all these years despite my
obvious obsessive need to play video games, combined with my ability to remem-
ber complete dialogue from every Doctor Who episode; yet I can’t remember a few
birthdays. I love you all and am blessed to have such a great family. I'm still shocked
that I was allowed to possess an Apple Ile machine in my room through my forma-
tive years. How blessed art thou, Ultima IV?

To Jenifer Niles, Lance Morganelli, Bryan Davidson and all the wonderful
people at Charles River Media/Thomson Delmar Learning: This book would not
have happened without your guidance, persistence, and the opportunity for us to
work together. Many heartfelt thanks!

To Scott Tidwell and Randi Rost over at 3Dlabs. You guys went above and
beyond the call of duty by helping me with my GLSL questions and providing me
with a loaner Realizm 100 video card for some testing. Many thanks for everything.

xix

Acknowledgments

To the wonderful developer support staff at ATI who have been readily avail-
able to help me pinpoint problems in my code and troubleshoot any driver related
issues I've had.

Another much appreciated “Thank You” to Avi Shapiro and the people over at
Graphic Remedy for answering me with my gDEBugger problems.

To Bernie Wieser and John Brimacombe, who have helped me with sections of
this material, along with continuing to open my eyes in the field of game develop-
ment and software engineering in general. Somewhere along the way, you guys also
helped test some code. Thanks!

To Steve Ford who did a tremendous job on the music included in the Super-
AsteroidArena project and to Benjamin Wong who put in a lot of late nights putting
the artwork together. Thanks, guys, the check is in the mail. (No, really, I mean it.)

To Martin Piper for all of his support and help getting things running using the
ReplicaNet networking solution for this book.

Thanks to the developers who hang around the gamedev.net, indiegamer.com,
flipcode.com (R.L.P.), devmaster.net, and garagegames.com forums. Through the
years there have been so many golden posts on these boards, which have helped me
grind through code.

A final thanks goes to you, the reader. Game programming is not an easy field
or subject, even with the current level of software and hardware that we have at our
disposal. However, with this work comes many rewards. The reward of any com-
pleted game is the first step on a greater journey.

Preface

elcome to the exciting world of game programming! This text was born
Wfrom a desire to help others educate themselves on some of the popular

techniques and practices behind creating games today. To some, the
magic behind moving an image across the screen is taken for granted when playing
a new game purchased on the Internet or at a store.

To others, however, moving their first visible object across the screen is a rite
of passage into a larger, more exciting world—a world that usually responds to
their every command provided it is formed correctly; a world that can come to life
with dragons, space ships, submarines, and a host of infinite possibilities.

This book will help you pursue the knowledge behind making your computer
game fantasies a reality.

WHO SHOULD USE THIS BOOK

If you are already familiar with the C/C++ programming language and want to
enter the exciting world of game programming, then this book is for you. Over the
course of this material, you will learn many interesting and exciting concepts be-
hind the magic of game creation on the PC. Not only will you add a lot of theory to
your game programming toolkit, you will also create a small basic game from
scratch; a fun and exciting game of Asteroids called SuperAsteroidArena.

While you will focus on using the SDL and the OpenGL libraries to learn game
programming, you can also apply the concepts and fundamentals presented here to
create just about any kind of game with any other language.

xxii

Preface

BOOK HIERARCHY AND LAYOUT

This book is structired to enable you to learn about game programming and cre-
ation in a natural progression. Each chapter and subsection builds upon previous
chapters and topics, which will help you sort through the vast amount of material
available on game programming. The text is presented in a tutorial format that
allows you to progress at your own pace.

The following brief overview can help you chart your path through this book:

Chapter 1: This is an introduction into the world of game programming on
the PC. This chapter focuses on providing an overview of the existing tech-
nologies available to the game developer today.

Chapter 2: This chapter introduces you to some of the concepts behind the
design of a game.

Chapter 3: This chapter focuses on introducing you to some basic concepts
surrounding the popular SDL library and Windows programming in general.

Chapter 4: This chapter introduces you to some of the objects that you will be
developing throughout the rest of this book. You will make a small engine
known as Peon, which will contain some small but useful objects for nearly any
game you make.

Chapter 5: This chapter introduces you to some of the mathematics behind
working with 3D graphics.

Chapter 6: This chapter introduces you to the world of OpenGL, which is a
cross-platform graphics library.

Chapter 7: This chapter expands upon the OpenGL introduction provided in
Chapter 6.

Chapter 8: This chapter is an introduction to some of the popular methods
of organizing the objects in your game world. Scenegraphs, BSP trees, and
OctTree algorithms are discussed here.

Chapter9: This chapter contains the graphics segment of the SuperAsteroidArena
project.

Chapter 10: This chapter focuses on introducing you to working with input
devices through SDL.

Chapter 11: This chapter introduces you to working with the popular SDL_
Mixer library and OpenAL to load and playback some high-quality music and
sound effects for your games.

Preface XX

Chapter 12: This chapter focuses on the segment of the SuperAsteroidArena
project that deals with handling input and sound.

Chapter 13: This chapter focuses on introducing you to principles of collision
detection and physics.

Chapter 14: This chapter focuses on providing an introduction to basic net-
working principles and techniques with source code in SDL_Net.

Chapter 15: This chapter introduces you to the segment of the SuperAs-
teroidArena game which focuses on multiplayer communication.

Chapter 16: This chapter introduces you to using models created in an ex-
ternal modeling tool. It also demonstrates one way to handle a model anima-
tion format.

Chapter 17: This chapter focuses on providing an introduction to various
techniques you can use for special effects within your game.

Chapter 18: This chapter provides an introduction to the world of shader
programming provided by the OpenGL ARB in the GLSL specification.
Chapter 19: This chapter focuses on some ways of incorporating scripting
support into your application or engine using Lua.

Chapter 20: This last segment for the SuperAsteroidArena game focuses on
applying some final polish to the game.

Chapter 21: The final chapter of this book discusses other things to think
about when finishing your game and delivering it to your customers.

No matter how small a game is, the art and practice of creating that game involves
a rather large amount of work. For this reason, not every aspect of game program-
ming or development is presented in these pages. Topics and items that are outside
the focus of this book are noted where possible.

PROGRAMMING STYLE

Although this book makes an assumption that you are somewhat versed in the
C/C++ language, the accompanying code for this material is meant to be as small
and clean as possible. Feel free to have your favorite C++ reference book and ma-
terial accompany you on the journey through the code for this book.

xxiv Preface

FURTHER SUPPORT

Although the source code presented throughout this book is available on the accom-
(< panying CD-ROM, updates naturally accompany any software. Please be sure to visit
owmEe either the publisher’s Web site at http://www.charlesriver.com or the site devoted to this
book at http://book.wazooinc.com for updates.

Game Technologies

Chapter Goals

® Introduce and cover some of the popular license agreements.

® Discuss existing and useful game technologies that are currently
available for game developers.

® Introduce the Concurrent Versioning System (CVS).

Introduce creating HTML-friendly documentation with Doxygen.

® Discuss some helpful C++ components provided by the Standard
Template Library (STL).

exist and are worth discussing. Because some games might require a different

approach (in either the technical or design aspects), an in-depth evaluation of
the strengths and weaknesses of each is presented in this chapter so that you can
better minimize the risks involved in developing your game.

For the beginner game developer, plenty of useful game technologies already

COMMON LICENSE AGREEMENTS

Some of the more common license arrangements are also worth mentioning; you
need to understand the limitations surrounding any technology you decide to use.
There tends to be a lot of misinformation about what a license means, even though
most agreements give you a lot of flexibility. '

Game Programming in C++: Start to Finish

Lesser GNU public license: Most game development libraries are released
under the LGPL license, which allows you to use the software in any applica-
tion—commercial or otherwise. The only restriction is that if you modify any
of the source code of the LGPL’d software, you only need to make those par-
ticular modifications public. It is not necessary to release the source code for
the rest of your project. Software libraries such as the SDL and the Peon engine
used in this book are released under this license arrangement. You need to
make sure that the modified source code is publicly accessible, whether this is
through a published link on your Web site, in public documentation (such as
a game manual), or on an FTP server.

GNU public license (GPL): Some software falls under this category. It is a
popular choice for some of the industry’s leading released source code (also
known as AAA), such as code from Id Software. GPL is similar in many ways
to LGPL in that you must include copyright notices with your project, and you
can charge money for projects created using GPL’d modules. However, any
project using GPL-protected software then automatically becomes a derivative
project and is bound by the GPL terms and conditions. In other words, if you
create a game using the Quake2 or Quake3 code released by Id Software under
the GPL, then you are allowed to charge money for it but must make the source
code to your project publicly accessible.

The BSD license: Some projects are also released under this license, which
allows you to do just about whatever you want with the software. The only
restriction is that you keep the original licensing copyright notice with your dis-
tribution, and you cannot use the original creator of the software to endorse
your project without express written consent. Apart from those restrictions,
you can modify the source code any way you want.

Creative Commons license: A rising star among open source licenses is the
Creative Commons license. As more game assets are created and released to the
Internet, such as a texture set created by one artist, some background music
created by another, and maybe a collection of 3D Studio Max models, the com-
mon GPL or LGPL structures do not always make sense for their creations. As
such, the Creative Commons license was developed for these types of terms and
conditions. The official site is listed in Appendix F, but it brings you to a Web
page that is in the form of a License Wizard. Using this wizard, you can walk
through a series of questions pertaining to how exactly you want to protect
your work. When it is finished, the wizard will produce the terms and condi-
tions in the form of legalese that you can distribute with your project or adver-
tise on your Web site.

Game Technologies 3

In standard practice with your own library or project, it is usually a good idea
to cut and paste your copyright into every header file in your project. At the very
least, you should have some kind of a text file that you distribute with your project
that clearly outlines with what type of license you are releasing your project. Most
projects have an accompanying README or COPYING text file explaining the li-
cense in the root folder of the project.

SOME HELPFUL TECHNOLOGIES

On the Internet today are many entertainment or multimedia-related projects, and
you should become familiar with some of the popular choices for game program-
ming on the Windows platform.

The following engines or technologies are ranked in alphabetical order, not by any
special preference. Do not forget to thoroughly understand the license agreements
surrounding each package or toolkit before going forward with your project.

Blitz3D/Max: Mark Sibly launched the Blitz3D game engine kit in 2000. This
kit is used by some programmers for their success. The engine comes with an
editor that allows you to work with scripting code in order to interface with the
Blitz engine. Although the scripting language is called BlitzBasic and looks sim-
ilar to the old QBasic syntax, it provides a powerful interface to the underlying
engine, which will run on any Windows system supporting DirectX7 or higher.
As of this writing, an updated cross-platform version of Blitz3D (called Blitz-
Max) has been released; this version is now capable of supporting both the
MacOS and Win32 platforms. It offers an improved code base over its prede-
cessor, and the rendering engine has been altered to support OpenGL in order
to function in the cross-platform environment. Although larger projects can
sometimes be difficult to manage with the Blitz IDE, this family of develop-
ment software does target the beginner game developer with little-to-no skill in
graphics programming. There also is a very large and supportive community
from which you can draw experience should you encounter any difficulties
creating your game.

DirectX: With their DirectX software development kit, Microsoft has been
involved with games programming on Windows virtually since the release of
Windows 95. The goal of DirectX was to unify the interface design of input,
sound, and graphics devices, in order to push the onus of device driver certifi-
cation on the hardware vendor. As long as the hardware is DirectX certified,
then it should function with any DirectX application. Now on version 9.0c of

Game Programming in C++: Start to Finish

the SDK, DirectX is slowly migrating itself in preparation for the upcoming re-
lease of Windows Vista. It is still a popular development platform for Windows
game programmers; however, it is now only supporting the Windows XP fam-
ily of products. Microsoft has also recently announced the XNA initiative,
which is an attempt to lessen the gap between game developers and the gaming
audience for whom they are developing. Although the XNA Studio product (or
family of products) is not due to ship until 2006, Microsoft is pledging that
XNA offers a better way to make game development a faster process.

FMOD: A cross-platform audio library, FMOD has secured a strong foothold
within the game development community by providing a fast and easy inter-
face to your audio effects and music. Started in 1992 by Brett Paterson, FMOD
began life as a Gravis Ultrasound mod player for DOS. Ten years and many re-
visions later, Brett has continued on with FMOD under the newly created com-
pany of Firelight Technologies. His team has since added support for the PS2,
PSP, PS3, Xbox, and Xbox360 consoles. The license cost has a simple and fair
scaling algorithm to provide FMOD for any project, from the small hobby or
shareware title up to an AAA commercial venture such as Blizzard’s World of
Warcraft.

OGRE: Initially starting this project in late 2001, Steve Streeting wanted to
create a cross-platform, scene-structured, and graphics-independent rendering
engine that was labeled the Object-Oriented Graphics Rendering Engine (OGRE).
Throughout the years in development, it has matured to quite an amazing ren-
dering package/suite for your own graphics needs. It has multiple rendering
capabilities supporting the Direct3D7, OpenGL, or the latest Direct3D9 inter-
faces. Among other features, it includes a way of presenting GUI controls, scene
management organization, and some handy importers for using modeling data
from some popular modeling packages. The OGRE team and surrounding
community is friendly and ready to give some direction for any issues or con-
cerns about using OGRE in your project.

OpenAL: Beginning in roughly 1998 as an open source audio library alterna-
tive to the DirectSound3D API established by Microsoft, the OpenAL library
was envisioned as a cross-platform 3D audio library for any project, both com-
mercial and hobby. The library or specification did not really begin to mature
until Loki Software and Creative Labs teamed together to expand the interfaces
in 2000. The OpenAL engine has driven quite a few successful game titles such
as Jedi Knight by Lucasarts, the U.S. Army’s America’s Army, Epic’s Unreal Tour-
nament 2003/2004 series, Marble Blast developed by GarageGames, and a host of
others. OpenAL has a nice, clean interface that provides the developer with an
easy-to-implement audio solution to their project, with the added benefit of a

Game Technologies 5

software mixer to fall back on. The design of the library is similar in nature to the
OpenGL specification in regard to how audio properties are assigned to an ob-
ject, as well as an extension mechanism to support updates to the OpenAL spec-
ification. You will learn more about using OpenAL in Chapter 12, “Input and
Sound Timebox.”

Popcap framework: One of the most successful publishing companies for
shareware games is the Popcap game online portal, which launched in 2000.
They have published a long list of successful titles through the years and are
now contributing back to the small-time game developer with the release of
their toolkit, which is used in most of their developed products. Popcap was
among the first online publishing companies that have specialized in making
small, but addictive, titles such as Bookworm, Bejeweled, and Zuma. The frame-
work is a kick start to creating small, but exciting games on the Windows plat-
form. It is not meant for any 3D graphics, however, as it focuses on providing
a strong software sprite library.

RakNet: The most common hurdle in any multiplayer project is properly
dealing with networking sockets. The DirectPlay networking middleware
component of the DirectX SDK was available free of charge, but it was only
available on Windows. Other developers also did not like the way it was imple-
mented. One such developer, Kevin Jenkins, decided to create the RakNet
cross-platform library in 2001 based on a reliable-UDP packet delivery method,
which is a popular protocol of choice for fast network and Internet gaming.
RakNet is released under the LGPL and is a popular networking middleware
component.

ReplicaNet: In late October 2000, while working for (the now defunct) Arg-
onaut Games, Martin Piper was charged with writing a multiplayer Jet Ski
demo for the Xbox platform. Instead of taking the typical network coding ap-
proach, Martin opted for a solution that involved creating a virtual database,
which maintained itself across each node in the network. With much research
into distributed technologies such as CORBA, DIVE, NPSNET and VIRTUS,
Martin crafted a solution that described the data used by the game entities in
such a way that the game logic would not need to concern itself with serializa-
tion. The database copy on each node would manage and replicate itself across
every node when necessary. ReplicaNet is a cross-platform library, capable of
running on Windows, Linux, and some game consoles. Martin has graciously
offered the freeware license of ReplicaNet for use for this book. It is discussed
in further detail in Chapter 15, “Networking Timebox.”

Quake2 and Quake3: Although these game(s) are several years old, John
Carmack and the rest of Id Software have been more than generous in making

Game Programming in C++: Start to Finish

the source code available under the GPL. This code can help point you in the
right direction on a wide variety of common game programming issues, such
as networking or graphics-related problems. Being among the first companies
to release any source code to an actual AAA-quality game, Id Software has al-
ways been generous in helping the struggling developer.

SDL: While working at the now defunct Loki Software, Sam Lantinga created
and launched a cross-platform toolkit in 1997 known as Simple DirectMedia
Layer (SDL). Released under the LGPL, the SDL provides a thin interface to the
underlying video, sound, and input components across each platform, which
allows you to focus more on developing higher level game logic rather than
worrying about creating windows, initializing input hardware, or other low-
level device tasks. With the ability to integrate itself quite seamlessly with
OpenGL, it is another popular choice among beginner programmers and in-
dependent game professionals alike, and it is the library with which you will be
making a simple engine throughout the rest of this book.

Torque: Jeff Tunnell and Rick Overman, along with a few others from the
game company Dynamix, decided that they wanted to go into business for them-
selves after leaving Sierra. They created their own publishing company called
GarageGames, which was launched in 2000. GarageGames is an independent
(indie) friendly publishing house that is becoming a popular gateway for game
development. They offer a license to their proprietary game engine, Torque, for
use for your own projects. Torque is a huge, impressive, cross-platform game
engine that has not only powered the Tribes2 game, but is also behind several
successful projects such as MarbleBlast and Orbz. Although a license fee provides
you with the source code to the mature and commercially proven engine itself,
chances are high that you will not need to modify it. Instead, your game interfaces
with the engine via TorqueScript, a scripting language similar in nature to
JavaScript, to leverage the power and flexibility of the engine. Although there is a
bit of a learning curve, the sheer amount of useful resources available on the
Web site and through the Torque community can help you through the initial
hurdles. Since the Torque engine hides a lot of the lower-level programming
from you, it generally takes some tinkering with the engine in order to under-
stand the relationship between the scripts you create and how they interact with
the underlying components.

As you can see, there are a large number of engines and game toolkit technolo-
gies available to help complete the difficult task of designing and implementing a
game. Although they are all excellent resources, some require more programming

Game Technologies 7

knowledge than others. Although some packages are more productive in the long
run, they might have a much higher learning curve in the beginning, which can
cause unexpected delays to the project. However, there are enough game resources
available to satisfy the needs of anyone at any skill level and using just about any
programming language.

Before you plunge into the world of game programming, you need to have some
tools handy for creating your adventures. Throughout the remainder of this chapter,
you will learn about some important tools that can apply to not only your own game
development, but also to just about any software project upon which you embark.

Concurrent Versioning System (CVS)

“Time is money” is a common business mantra, and now more than ever compa-
nies are trying to cut down their expense overhead to improve their shareholder
ranking and profit margins. As in regular software development, game develop-
ment houses usually have very little room for error. The code developed by the
team becomes part of the lifeblood of the company. To lose the code would have a
catastrophic impact on the project and in a worst-case scenerio could even sink the
company itself. Although having a regular software backup schedule is essential to
keeping a physical history of the project, version control is also of primary impor-
tance as it allows you or any team member to view the history of the code base you
are all developing. Since a team of developers, scripters, documentation writers,
and so on, are all involved in the project, the code base can be a constantly shifting
entity that can change hourly. As you might imagine, not having a working snap-
shot of the latest code base can cause problems and unneccessary delays. Without
the ability to view a history of the resources involved, you might experience un-
neccessary delays and frustration if you and your team are trying to track down any
bugs that have suddenly appeared in your game.

7 Anything can be dumped into a version control system, from the artwork created
/ by the artists, the code of your game, the sound and music effects created by the

NOTE

sound engineers, and even the HTML code that contains the Web site for your
product.

One of the most popular version control systems is the Concurrent Versioning
System (CVS). Originally created for the Unix platform, CVS has gained world-
wide popularity as the version control system of choice. For the purposes of this
book, you will be using a Windows flavor of CVS, called CVSNT.

Game Programming in C++: Start to Finish

Installing CVSNT

; Browse to the /tools_install folder included on the CD-ROM and launch the CVSNT
setup binary. You do not need to change any of the default settings with the installa-
tion, so just allow it to install. When the installation is completed, it will be necessary
for a machine reboot.

When finished, you can now create your own code repository. Go into the
system control panel and launch the CVSNT control panel applet, denoted by the
green fish (see Figure 1.1).

‘.ﬁ.utomatic Updates Set up Windows to automatically del
WS For NT \ Configure the CWS NT Service
&Date and T%e Set the date, time, and time zone fo
€3 Direct Chanoes properties For Directs

FIGURE 1.1 CVSNT applet.

You are now presented with the main CVSNT panel. Click on both of the Stop
buttons to stop the CVS services. In a File Explorer window, create a folder on the
working drive to house a repository as shown in Figure 1.2.

[CDcvs_repository File Folder 3/12/2005 6:08 AM
Dcvs_temp [% File Folder 3/12/2005 6:07 &M

FIGURE 1.2 Local repository folder.

In the Repositories tab, click the Add button to create a new repository. In the
Location field, be sure to select the cvs_repository that you created previously. Then
enter the name /projects in the Name field. This name is your key to accessing
your repository, as shown in Figure 1.3 so do not forget it .

A message dialog box should appear inquiring whether you want to initialize
the folder. Press Yes. Select OK, go back to the main tab, and start up the services
again using the Start buttons. That is all you need to create a CVS repository server
that houses your project.

Game Technologies 9

Edit repository .

I!proiecls
| CIK I Cancel l

FIGURE 1.3 Name the repository.

Using CVS

VHQ‘

Now that you have your central repository server created, it is time to learn how to
use it for development purposes. Although you can use the command line to inter-
act with the CVSNT server, it is easier for beginners to use a tool with a graphical
user interface. For this book, you are using the TortoiseCVS Windows Explorer
shell interface to work with CVSNT.

Available on the accompanying CD-ROM in the /tools_install folder, the Tor-

wmea toiseCVS GUI hooks itself right into the Windows Explorer shell menus, making it

much easier to interact with your CVS repository. In practice, you only need to re-
member a few important concepts regarding a repository system: how to work with
a module (that is, checkout), how to update files, and how to put them back into
the repository (that is, checkin).

CREATING THE SUPERASTEROIDARENA PROJECT

Now you will begin preparation for creating the SuperAsteroidArena game. First,
you will create a new project within the repository system that you have just fin-
ished installing. Create a new blank folder called c:\cvs_working_folder. Within this
folder, create another folder called SuperAsteroidArena. Right-click on this folder
and select the Make New Module of the CVS menu option (see Figure 1.4).

You next need to fill out some important information to define the project
properly within the repository. You might want to read up on implementing secu-
rity on your repository; for now there is none. The fields should be filled out as they
appear in Figure 1.5.

Game Programming in C++: Start to Finish

Superfsteroidarens

Open

Explore

Browse with WinCvs

Search. ..

Add to Winamp's Bookmark list
Enqueue in Winamp

Play in Winamp

Convert to file format. ..

older 3f12/2005

Sharing and Security...
& Snaglt »
W CYS Checkout, .
3 WinZip »| & Checkout TortoiseCys
& Checkout wxWidgets
Scan for Viruses, ., .
" Preferences. ..
T
Send To @ Help...
Cut w#About...

FIGURE 1.4 Make New CVS module.

TortoiseCVS

.,

| Module

- Make New Module

CVYSROOT: l :sspiclocalhost: /projects

Protocol:

Protocol parameters: I

IWindows authentication (:sspi:)

Server: [localhost

Port: L

Repositary folder: [-’ projects

User name: l

Module: | SuperAsteroiddrena i [ki]

FIGURE 1.5 CVS project definition.

Game Technologies 11

When finished, select OK, and you should see a results window informing you
whether the creation was successful or not. You should see a message similar to Fig-
ure 1.6.

Finished make new module in C:\cvs_working_fold... l;“ﬁ“g\

If C:A\DOCUME ~15ADMINI~1ALOCALS ~ 14T emphT ortoiseCYS make new module A |
temp': "C:%Program Files\T ortoiseCyShovs.exe” "-g" """ "import" "-m" ks .
"Superdsteroiddrena’’ "tovs-vendor” Mtovs-release”

CWSRO0DT =sspilocalhost: /projects

Mo conflicts created by this import

Success, CVS operation completed

In C:hevs_working_folder: "'C:\Frogram Files\TortoiseCWS \ovs. exe” "-g" "
"checkout '-d" "Sugerdsternidirena’ "Superdsteroiddrena”
CYSROOT=sspilocalhost /projects

Success, CVS operation completed

Tortaise Tip: The top-level folder has now been created in CVS.
To add files and subfalders, invoke the CVS Add Contents command.

gk J | Abot |

FIGURE 1.6 Project creation status.

Working with Files

Although there is no source code to play with just yet, you can practice using CVS
by working with a simple text document.

Within the SuperAsteroidArena folder, create a new text file todo.txt and open
it with Notepad. Type some text such as Create game here and save/close the file.
You should notice that in Windows Explorer, the file now has a blue question mark
icon on it. This signals that it is a file that does not yet exist within the repository as
shown in Figure 1.7.

12

Game Programming in C++: Start to Finish

FIGURE 1.7 Unexisting file in the project.

You can fix that by right-clicking on the file and selecting the CVS Add. . . . op-
tion seen in Figure 1.8.

FIGURE 1.8 CVS Add dialog.

Select OK on the dialog box that pops up, and then CVS will try to add this new
file into your project in the repository. The operation should result in a success mes-
sage, and the file should now have a new icon on it. This is a visual cue that it has
been added, but not committed to the repository, as demonstrated in Figure 1.9.

FIGURE 1.9 File added to repository.

To fix this, simply right-click the file again and select the CVS Commit menu
option visible in Figure 1.10.

Game Technologies 13

5 _ormmit...

FIGURE 1.10 Commit file.

Select OK, and you should see another success message generated by CVS.

3~/ Note by default that when an object is added to the repository, it is automatically
u assigned a version number of 1.0 by CVS.
woTE

Checking Out Objects

To demonstrate the process of checking out a project/file, move to a different folder
on your computer. Right-click somewhere in the File Explorer window and select
the CVS Checkout menu option. The CVS settings should remain the same, so you
should be fine just selecting the OK button. CVS will do some work, and you
should end up with a results window like Figure 1.11.

*“Finished checkout - TortoiseCYS

In C:hevs_working_folderkt : C:\Program FileshTortoiseCYShovs.exe -q :-c
checkout -P Superdsteroidirena
CVYSROOT=sspilocalhost. /projects

U Superdsteroidirenaltodo.tat
Success, CVS operation completed
1
FIGURE 1.11 Status of checkout.

14

Game Programming in C++: Start to Finish

Now that you have got the todo.txt file to work with again, update it with some
other text. Again, type whatever you want and save/close the file. It should now be
a different color (red), which again is a visual cue that the file was modified. If you
use the CVS Commit dialog as outlined previously, CVS will update the version
that you have in the repository with this new one. Notice again the updated version
numbers shown in Figure 1.12.

*“Finished cbmmit - TortoiseCYS

n C:hevs_working,_foldervtest\Superdsteraidérena: C:\Program Files\ T ortoizeCy'S
Cvs exe -q - commit -m todo, bkt
fSROOT=szpilocalhost: Aprojects

hecking in todo.txt;
projects/Superdsteroiddrenattodaotst, v <~ todo.tst
ew revision: 1.2; previous revision: 1.1

one

{Success, CVS operation completed

FIGURE 1.12 Commit status.

Introduction to Doxygen

ON THE CD

If you have team members touching the same modules often enough, or even if you
are the lone developer, any code can get complex and unreadable. Documentation
becomes critical as the developer should understand what each module is attempt-
ing to actually do. Not only that, but sometimes it is necessary to update code that
has not been touched in a long time, and you probably will not remember the rea-
sons behind why you implemented the code the way you did. Available on the CD-
ROM in the /tools_install folder, Doxygen is a powerful and handy tool that
generates Web page-friendly documents from the commented source code that
provides an overview to the project. Listing 1.1 demonstrates a sample class header
file with Doxygen-friendly commenting, available on the CD-ROM in /chapter_
source/chapter_01/HealthObj.h.

Game Technologies 15

LISTING 1.1 Sample Doxygen-Friendly Class Definition

/'k
*
*
*
*
*

*

]

\brief This object modifies an entity’s hit points

The purpose of this object is to hang around in your game world
until the Player picks it up. Depending upon how much health
points the instance of this object is worth, it is added or
subtracted to the player's overall health score

class HealthObj : public ObjA

{

public:

[*)

* constructor
xy
HealthObj();

[*1
* destructor
*/

virtual ~HealthObj();

b

//comment blocks can also begin with...

/**

* This method places our object in the game world along
* with assigning it a health value

* @param x - X position

* @param y - y position

* @param z - z position

* @param h - health

* @return true or false if this object was allowed

30

bool setPosition(float x, float y, float z, int h);

//snip!

The Doxygen tool comes with a nice and friendly graphical user interface to help
you choose which options you would like to incorporate into the generation of the
documentation. For example, you can specify your own cascading stylesheet (.css)
files for the header and footer area of the document. After installing the utility, to
launch the Doxygen tool you need to execute the Doxywizard menu item from your
Start menu. You will be presented with a main dialog as shown in Figure 1.13.

16 Game Programming in C++: Start to Finish

] Doxygen GUI frontend

File Help N
"y

Step 1: Configure doxygen

Choose one of the following ways ta configure dosygen
! Expett...] Load...

Step 2: Save the configuration file

Save...] Status; not saved

Step 3: Specify the directory from which ta run doxygen

‘Working directary: | § Select... l

Step 4: Run doxygen

Start ! Status; not running . Save log... I

Output produced by dowyaen

FIGURE 1.13 Doxywizard.

The use of the Wizard button will guide you through the basics of creating a
Doxygen-compatible configuration file. When it is time to generate the HTML-
friendly documentation, you launch Doxygen by pressing the Start button.

Within the specified target folder, if you then launch the html\index.html file
in your browser, you will see the Healthobj object created from the Doxygen tool.

For further examples of using Doxygen in a real world situation, be sure to in-

~<, , spect the documentation or the source code files that accompany the SuperAs-
wmea teroidArena or the Peon project contained on the accompanying CD-ROM.

Introduction to InnoSetup

The very first thing a potential customer will see before playing or buying your
product is usually one of the final tasks the game developer tackles during the life-
time of the project. The goal of the installation procedure is to make the process of
installing your game as painless as possible for the player.

o
ON THE CD

NOTE

Game Technologies 17

There are many friendly installer tools on the market, but one of the easier
systems to use is InnoSetup. It can handle simple installation requirements such as
file copying and registry key creation, along with providing an easy uninstall pro-
cedure. It is also available on the CD-ROM in the /tools_install folder.

Remember who your target player is when creating the installation procedure,
as some players might have no idea what kind of system they are running, or which
version of DirectX or OpenGL video drivers are installed. With this in mind, keep
the language simple by not using a lot of technical jargon during the process.

Re-running an installation procedure of an existing successful product is a good
start to perfecting your own installation appearance. In order to maintain an at-
mosphere of “positive transfer” among other applications that the player is accus-
tomed to installing, try to use the same installation language that other well-known
products use.

The documentation provided with InnoSetup is incredibly detailed and makes
it very easy to accomplish the basic necessities of an installer package. Listing 1.2 de-
tails a sample InnoSetup script used to install some files and create an icon.

LISTING 1.2 InnoSetup Sample Script Taken from the InnoSetup Examples

; — Examplel.iss —
; Demonstrates copying 3 files and creating an icon.

; SEE THE DOCUMENTATION FOR DETAILS ON CREATING .ISS SCRIPT FILES!
[Setup]

AppName=My Program :
AppVerName=My Program version 1.5
DefaultDirName={pf}\My Program
DefaultGroupName=My Program
UninstallDisplayIcon={app}\MyProg.exe
Compression=1zma

SolidCompression=yes

[Files]

Source: "MyProg.exe"; DestDir: "{app}"

Source: "MyProg.hlp"; DestDir: "{app}"

Source: "Readme.txt"; DestDir: "{app}"; Flags: isreadme

[Icons]
Name: "{group}\My Program"; Filename: "{app}\MyProg.exe"

Game Programming in C++: Start to Finish

After installing the InnoSetup application, you will need to launch the In-
noSetup Compiler option from the Start menu. You will be presented with a Wel-
come Wizard dialog as shown in Figure 1.14.

Welcome]:)E

“ New file ;
] O Create anew empty script file
(O Create a new script file using the Script Wizard

 Open file
% ® Open an existing script file

| More files..

C:A\Program Files\nno Setup S\Examples\E xample1.iss
C:\Program Files\nno Setup S\Examples\UninstallCodeE xample1

[I0ontshowthisdislogagain by [0k] [Concel |

FIGURE 1.14 InnoSetup Compiler.

You have the choice of either starting with a blank compilation script or using
the wizard to automatically generate your own.

For the purposes of the SuperAsteroidArena project, you will run through a
quick setup here.

Start by selecting the option to use the wizard to generate your own setup script.
Enter the application information relevant to the project as shown in Figure 1.15.

The entry fields are self explanatory. For the version number field, feel free to
start off with a small number such as 0.1 and gradually increase it with each release
of your game. The standard practice is to mark the version you present to the pub-
lic as the 1.0 version.

After pressing the Next button, you will be presented with the Next dialog as
shown in Figure 1.16.

Game Technologies

Inno Setup Script Wizard

Application Information
Please specify some basic information about your application.

Application name:

{ Superdsteroidarena]

Application name including version:
lSuperAsteroidArena 1.0 [

Application publisher:

[@oo Enterprises Inc. l
Application website:

ﬁ\!lp:h'book.wazuuinc.cord |

L

bold = required r < Back]E Next > a[Cancel]

FIGURE 1.15 SuperAsteroidArena application information.

Inno Setup Script Wizard

Application Directory
Please specify directory information about your application.

Application destination base directory:

[F'rogram Files directory

l

Application directory name:

j Superdsteroiddrena %

Allow user to change the application directory
Other:
[] The application doesn't need a directory

3

bold = required r < Back]E Next >J [Cancel]

FIGURE 1.16 SuperAsteroidArena application directory.

20

Game Programming in C++: Start to Finish

Most of the retail games today choose to install their game within the c:\pro-
gram Files folder structure. You can either choose this as the default location or
allow the player to select their own. After moving to the Next dialog, you can spec-
ify where the application binary is located within your folder structure. This is
demonstrated in Figure 1.17.

Inno Setup Script Wizard

Application Files
Please specify the files that are part of your application.

Application main executable file:

lC:\Program Files\Superdsteroidirena\Arenatd ain.exe [[Browse...]

[] Allow user to start the application after Setup has finished
Other application files:

Add file(s)...
Add directory...

B

bold <peured [<Back J[New>] [_cancsl]

FIGURE 1.17 SuperAsteroidArena application files.

The next phase of the installation generation wizard is to specify which icons
are created for your application and where they will reside. Figure 1.18 details the
available options.

As you can see, you have the ability to create an icon for your application on the
Quick Launch toolbar along with one on the desktop. You can also choose whether
you want everyone on this machine to have your game created in their respective
Start menu folders. .

The next dialog page in the Install Generation wizard contains the all-impor-
tant information regarding the license of your game. This is an important step as
you are detailing what kind of permissions the player has with your software. This
is detailed in Figure 1.19.

Game Technologies 21

Inno Setup Script Wizard

Application lcons
Please specify which icons should be created for your application.

Application Start Menu folder name:

[¥] &llows user to change the Start Menu folder name
[7] Allaw user to disable Start Menu folder creation
[[] Create an Internet shartcut in the Start Menu folder
[] Create an Uninstall icon in the Start Menu folder
Other:
Allow user to create a desktop icon %
Allow user to create a Quick Launch icon

bold = required f < Back N Next > i[Cancely]

FIGURE 1.18 SuperAsteroidArena icon configuration.

Ifyou are specifying a license file for use with a game you are trying to sell, consider
putting your company’s return policy in this license file. Detail explicitly the terms
and conditions under which you may (or may not) refund the customer.

The final input dialog that you have available in InnoSetup is to specify any ad-
ditional compiler settings. Figure 1.20 provides a screenshot of this Compiler Set-
tings dialog.

When you are satisfied with your input decisions, the InnoSetup compiler will
then generate the installation script for you. The compiler will then ask whether
you want to create this new installation binary.

To see a real-world InnoSetup script in action, be sure to inspect the
/SuperAsteroidArena/ArenaMain/installer.iss file contained within the Super-

., AsteroidArena project on the CD-ROM. You will also learn more about installation

1 tips in Chapter 21, “Finishing Tips and Tricks.”

22 Game Programming in C++: Start to Finish

Inno Setup Script Wizard

Application Documentation
Please specify which documentation files should be shown by Setup during
installation. : ! [

License file:
[e:\SuperAsteroidArena\license.txli] [Browse... j

Information file shown before installation:

L :] { Browse...]

Information file shown after installation:

[] [,Browse,.“]

[< Back ﬁ Neut) : i[Cancelj

FIGURE 1.19 SuperAsteroidArena application documentation.

Inno Setup Script Wizard

Compiler Settings
Please specify some basic compiler settings.

Custom compiler destination base directary:

“ » I [Browse... j

Compiler destination base name:

i setup {

Custom Setup icon file:

| I [Browse... j

Setup password:

% [< Back]E Next > QLCancelj

FIGURE 1.20 SuperAsteroidArena compiler settings.

Game Technologies 23

THE STANDARD TEMPLATE LIBRARY

The STL programming library is another important and valuable tool that will save
you a lot of time and troubleshooting. Despite the underground rumors that seem
to persist in questioning the use of an STL within a game (or any other high-per-
formance application), the fact of the matter is that the STL was originally created
and optimized for speed. It is used on many past and present game projects on
Windows, MacOS, and even some of the consoles. The STL is built around the con-
cept of containers. In other words, the majority of the classes developed within the
library are fast and efficient objects to store other objects. The three most com-
monly used containers from the STL that game programmers typically use are the
Vvector, String and Map container objects.

std::string

The STL string container represents an optimized safe array of characters that pro-
vides you with an easy-to-use container for storing string data. When working with
char arrays, there is always a small chance that you might try to access an element
in the array that is out of bounds. You might also come across problems with using
strcat or strcpy to copy one large character array into a slightly smaller one. To
handle these cases, you normally need to create blocks of tests to ensure that the
string operations completed successfully. Instead, the STL string container gives
you some easy ways of manipulating string data, without worrying about illegal op-
erations such as those mentioned previously. Listing 1.3 demonstrates a simple
sample.

LISTING 1.3 An std:string Example

//specify that you want to use objects defined in the
//std namespace.
using namespace std;

int main(int argc, char* argv[])

{

//define a string object..can also be defined as std::string
string text_string;

//instead of strcpy we can use the = operator
text_string = "Hello World";

//instead of strcat we can use += operator
text_string += " I am a std::string";

24 Game Programming in C++: Start to Finish

//when needing a pointer to the character string buffer,
//always use the .c_str() method
cerr << text_string.c_str() << endl;

return 0;

std::vector

Another popular container of choice for the game programmer is the STL vector
object, which can be used as a dynamic array for any object you want to store. As
with the std: : string container, the vector container is one way of avoiding out of
bounds errors. As elements are inserted into the container, the vector first ensures
that there is enough room for the new element. If there is not, then it will create a
large enough space for the new object. Listing 1.4 gives you a small sample of the
power of the STL vector.

LISTING 1.4 An std::vector Example

//specify that you want to use objects in the std namespace
using namespace std;

int main(int argc, char* argv[])

{

//define a vector container to store integers
//can also be defined as std::vector
vector<int> oVecInteger;
oVecInteger.push_back(9);
oVecInteger.push_back(6 &

//an iterator is an STL object used to enumerate or
//process the contents of a container
for(vector<int>::iterator it = oVecInteger.begin();

it 1= oVecInteger.end(); it++)
{
//it is a pointer to the element in the iterator,
//so *it dereferences it so we can get the value
cout << "displaying value: " << *it << endl;
}

Game Technologies 25

return 0;

std::map

The last STL container object you will learn about here is the STL map container,
which creates and stores objects in a key value-pair format. This object is especially
useful when you need to quickly reference a collection of game objects. Listing 1.5
provides a sample of using STL map.

LISTING 1.5 An std: :map Sample

//to demonstrate how simple it is to store objects in a map
//container, define a simple monster object
struct sMonster
{
std::string monster_name;
int monster_health;
}s

int THAL_KEY = 1;
int KALED_KEY = 2;

//specify that you want to use objects from the std namespace
using namespace std;

int main(int argc, char* argv[])

{
map<int, sMonster*> oMonsters;
sMonster* moni = new sMonster();

sMonster* mon2 = new sMonster();

//set some basic properties for the monsters

mont->monster_name = "Thal®;
mon1->monster_health = 100;
mon2->monster_name = "Kaled";

mon2->monster_health = 50;

//insert them into thé map container using a key
//value that we can use to find them later
oMonsters.insert (make_pair(THAL_KEY, mon1));

26 Game Programming in C++: Start to Finish

//the following assignment is also legal
oMonsters[KALED_KEY] = mon2;

//we want to find the Thal monster so we need an
//iterator object to enumerate the map elements
map<ing, sMonster*>::iterator iter;

//find the element matching the key value
iter = oMonsters.find(THAL_KEY);
if (iter == oMonsters.end())

{
//can’t find it! .
cerr << "The Thal has been exterminated!" << endl;
telse
{
cerr << "The Thal has " << iter->second->monster_health
<< " health left. " << endl;
}

//clean up. Note that since you are storing pointers to sMonster
//objects which are allocated on the memory heap, you need

//to clean up and deallocate this memory before calling the
//clear() method of the container.

sMonster* pObj;
for(map<int, sMonster*>::iterator it = oMonsters.begin();
it = oMonsters.end(); it++)
{
delete it->second;
it->second = NULL;

//clear the map of the sMonster pointers
oMonsters.clear();

return 0;

. Game Technologies 27

Ifyou are considering using STL with a version of Visual Studio earlier than NET
2003, then be sure to check out the STLPort project, which fixes many bugs and
memory leaks detected in earlier versions of the STL packaged with Visual Studio
6.0. It is included in the accompanying CD-ROM under /tools_install. Another
option for using the STLPort libraries is to ensure that you are working with the
latest version of the Platform SDK available from Microsoft.

ON THE CD

CHAPTER EXERCISES

1. This chapter only touched on the large amount of tools available to the
game developer today. Do some of your own research with the help of
your favorite search engine to find your own favorite sites and resources.

2. Take some time to study some of the technologies and tools listed in this
chapter. When planning which to use, it helps to have a matrix created with
the strengths and weaknesses of each one to help the decision-making
process. Do not forget to include your own skills in order to help create or
rank the feature list you require that best matches the game you want to
create.

3. Be sure to practice using TortoiseCVS to interact with the CVS server. Get
comfortable with manipulating and tracking many resources within a project.

4. Inspect the documentation accompanying CVSNT to add a layer of secu-
rity to your source code repository. Create an update account that has per-
mission to checkout, update, and checkin files, along with a read account,
which only has enough permission to checkout the files.

5. Practice using the STL with some other small programs, with an attempt to
use the map and vector containers often. Check in these small samples to
your CVS repository, be sure to comment the code, and use the Doxygen
tool to generate some documentation to accompany them.

SUMMARY

In this chapter you were introduced to some of the more common license arrange-
ments under which game software tends to be bound. You were given a brief overview
of the GPL, the LGPL, and the Creative Commons license arrangements. This chap-
ter also introduced and provided an overview of some of the game technologies that

28

Game Programming in C++: Start to Finish

exist for the game developer today. You were also introduced to some commonly
used development tools that can save you from many hours of struggling and frus-
tration. Regardless of whether you are a lone-wolf developer or are working in a team,
ensuring that there is a proper backup schedule and source code repository system
can help save your project from certain doom should you experience any unfortunate
events. You were next shown how the Doxygen tool helps with generating HTML-
friendly documentation from source code comments. You also were briefly intro-
duced to the InnoSetup installation system, which is a terrific package for creating
user-friendly installation binaries. You also covered some of the basics involved in
using the common container objects of the Standard Template Library, including
how to use the string, vector and map containers.

When you have the toolset needed to create your own fantastic adventures, you
need to learn how to take the necessary steps to design your project, which you will
learn about in the next chapter.

Design Fundamentals

Chapter Goals

m Introduce some common software design methods.

Introduce software reusability techniques.

Introduce the Unified Modeling Language (UML).

Describe and cover the basic game phases.

Describe and develop a design document using the Agile design
process.

improve your project, but it is most often overlooked by beginning game de-

velopers. It can help to reduce the amount of development time for your
game by minimizing some of the risks involved and enabling you to better plan the
development stages.

3 basic understanding of some common design fundamentals can radically

WHAT IS A GAME DESIGN?

At the highest level of your game project, the game design details and defines how
your game operates and responds to the player. The game design acts as a blueprint
or structure that you and your team will use to work through to the completion of
your game. It provides everyone with a central, single definition of what should

29

30 Game Programming in C++: Start to Finish

occur within the game world, depending on what conditions exist or what input is
received by the player. Design helps you map from the basic concepts of your game
through to the implementation. It is also the central document that aids in coordi-
nating tasks between team members. Design literally describes and entails the last
word on everything involved with the game.

Skipping the game design process can contribute to massive delays in the project in
the later stages. Programming by trial and error is not a manageable process. Not

WoTE only is it much more difficult to maintain a single vision without a central docu-
ment or design, but it can be nearly impossible to recruit any help without provid-
ing something the potential team member can browse through.

To help bring your gaming projects to fruition, you can take advantage of soft-

ware design principles that the professional programmers use: the classic waterfall
approach or an iterative design.

CLASSIC WATERFALL SOFTWARE DESIGN

You might already be familiar with this type of approach, since the classic waterfall
method has been in use since the early days of software design. The waterfall model
focuses on each phase of the design flowing into the next. This means that as you
complete one phase of the design, you move into the next through implementation
and testing phases, cascading down through the creation process like a waterfall.
Figure 2.1 demonstrates this method.

. Requirements

FIGURE 2.1 Classic waterfall design process.

Design Fundamentals 31

Some programmers and software engineers working on applications will swear
by this design method in the real world, but it is not always the best model to fol-
low for game development. During the implementation phase of a project, for ex-
ample, you might realize that there are some flaws in the design based upon some
earlier (now erroneous) assumptions. After being perhaps months in development,
it is often far too late to return to your client and/or project manager to ask for
more time to rebuild a section of the code base.

The waterfall method also fails in some regards, as any software development
project is more of a fluid body of work than one that is developed in isolation. What
if the current target market demographic suddenly changes, and your marketing
team demands some alterations to the game? What if technology changes much
more quickly than anticipated, and new hardware or effects become available to
implement in your game?

These are only a few of the pitfalls that you or your team can encounter during
the project; therefore, you should have one or more contingency scenarios defined.

ITERATIVE SOFTWARE DESIGN

Because of some of the problems associated with the waterfall design approach, most
game programmers (some unknowingly) tend to follow a much more iterative de-
sign process. This style of the design allows for much more fluidity and adaptation
to the project if necessary.

Most of your gameplay is iterative in nature and is difficult to envision without
the benefits of building tests to see how the different rules of your game and/or uni-
verse interact with each other. If, after testing, you decide that some of the rules
need more tweaking or need to be removed altogether, the iterative method allows
you to adjust the design as necessary. In the waterfall method, objects within each
phase are pretty much set in stone as they depend upon objects created in the pre-
vious phase; therefore, any real tweaking is never allowed or even acceptable. Fig-
ure 2.2 provides an overview of the iterative process.

The “spiral” process underscores the continued process of requirements gath-
ering, making adjustments, and client feedback, which forms the heart and soul of
iterative design.

As you begin the overall design process, you are responsible for setting a sched-
ule that represents the timeline of the project to the best of your knowledge at the
present time. Along the way, you should mark project milestones, in which you and
your team have the opportunity to do a mini-evaluation on the project so far. If you
need to make any alterations or adjustments because of recommendations by the
marketing department or if you discover any serious problems with the design in

32 Game Programming in C++: Start to Finish

requirements

develop

FIGURE 2.2 lIterative “spiral” design process.

general, this is a feasible approach to follow. Each milestone should have a subset of
goals that you and your team are looking to accomplish. Again, during each mile-
stone period, the team can also readjust any or all of the upcoming goals.

Principles of Agile Design

During the 1990, the forming of Agile design methodologies was a direct response
to models such as the waterfall approach, which were regarded by some as cum-
bersome, bureaucratic, and slow processes of creating useful software. Initially the
methods proposed by the Agile designers were collectively known as “lightweight”
techniques. In 2001 some prominent members of the iterative software design com-
munity met to form the Agile Alliance. Their first task was to create the Agile Man-
ifesto, which grouped these lightweight principles under the universal Agile brand.
This has become an extremely popular design process within the industry and ben-
efits software designers of nearly every type of application. The core principles be-
hind the Agile design methodology are as follows:

1. Minimize project risk by developing your software in short iteration peri-
ods, known as timeboxes, which last between one and four weeks.

2. Each timebox of the project is within itself a project of its own and includes
all of the tasks behind releasing any updates to the main project. This in-
cludes new planning, new requirements, gathering and analysis, coding,
implementation, and updating documentation.

3. The Agile method emphasizes personal communication involving face-to-
face discussions with the client. Agile stresses the fact that meetings or discus-
sions with the client should always overshadow the written documentation
on the project. Agile teams are usually formed within close proximity to their

Design Fundamentals 33

actual clients. For Agile purposes, clients are defined as the people who have
defined the project to begin with. External customers and project managers
are some good examples.

4. The progress of an Agile project is measured by the amount of functioning
code at the end of every timebox.

5. Agile welcomes requirement changes by the client, even late in the project,
in order for the client to maximize any competitive advantage.

To the newcomers of this type of software design methodology, there is some-
times confusion between an Agile design approach and a pure ad-hoc practice in
which the developers simply work through the project in any direction they choose
with little restrictions. Since Agile methods emphasize continuous feedback along
with rigorous and disciplined processes, however, they create a successful environ-
ment with a clear direction and target.

Agile methods are focused around minimizing risk in the project. You are still
working from a larger picture but can prune any features from the project based on
your timebox progress.

One of the foundation principles of Agile is that the design is test driven in na-
ture. Agile developers create small tests to iteratively drive the project forward. Al-
though it is one of the principles of proper Agile design, creating a test framework
is out of the scope of this book. Please be sure to reference the Agile links contained
in Appendix F for further information.

When to Use Agile

Although this highly iterative process is eagerly accepted for quite a few projects, in
some cases the Agile methods might not work as well. The Alliance recommends
that teams using Agile techniques are no larger than roughly 10 developers in size.
These design techniques are also successful when used in projects that are extremely
volatile or contain rapidly changing requirements. A project as volatile as a game
makes Agile a perfect design candidate for you to learn and use to develop your
game software.

INTRODUCTION TO THE UNIFIED MODELING LANGUAGE

As you are learning about software design techniques, it should be apparent that
rarely does the project immediately shift into implementation and/or coding.
Regardless of which software design model you prefer, after you have created the

34 Game Programming in C++: Start to Finish

design document, it can save you a lot of time and hassle to transcribe your docu-
ment into a modeling language. The Unified Modeling Language (UML) is an at-
tempt to bring the concept of blueprints to the world of software design and
implementation. The language of UML consists of a number of different graphical
components that can be used to describe the architecture of your software. The ben-
efit of this technique is that you now have a common graphical representation of
your application that you and your team can follow. It becomes immediately ap-
parent which component relies on which other component; this can alert you to any
possible problems that might occur during the development phase of your project.

Although the UML is not the only modelirig language, it is becoming the most
widely accepted standard. In other words, this has major communication benefits
with the other developers on your team in regards to understanding the overall de-
sign and architecture of your system.

Basic Class Notation

Within UML, a simple rectangle is the basic notation for representing a class. The
rectangle is usually segmented into three sections. The uppermost section contains
the class name, usually bolded. The middle section contains any attributes for the
class, and the lowermost section contains any operations that the class can perform.
Figure 2.3 demonstrates this.

Class

Attribute

operation ()

FIGURE 2.3 UML class notation.

UML has a fairly strict differentiation between operations and methods of the
class. Within a UML context, an operation is a service that you can request from
WoTE any object of a class, and a method is a specific implementation of the operation.

Visibility Notation

- Within UML you can also provide an overview of the visibility of any attribute or
operation of the class. Since you are working with C++ for this book, this is equiv-

Design Fundamentals 35

alent to the usage of the public, private, and protected declarations. The charac-
ters -, #, and + declare the attribute or operation as private, protected, or public.
Figure 2.4 details visibility.

Class Name
+P ublic — attribute
— private — attribute

protected | | + operation

+ operation
+ operation

FIGURE 2.4 UML visibility notation.

Comment/Note Notation

Within the UML there is also a notation convention used to display or provide any
additional comments the designer might have. This is provided via the Note model,
which can also be referred to as a comment. Figure 2.5 details a comment notation
in action.

This i the core component
ofthe Peon Engine. All Peon projects

must instantiate this object,

FIGURE 2.5 UML comment notation.

Modeling Class Relationships

As you are well aware, classes never exist by themselves in a vacuum. They are inter-
connected with other objects within the system. UML provides several relationships
between objects, which are defined as connections between two or more notational

36

Game Programming in C++: Start to Finish

elements. Within UML, there are three relationship types provided: a dependency, an
association, and a generalization.

Dependency Relationship

One of the simpler relationships to model, the dependency provides a mechanism
for one object to depend upon another object’s interface.

Association Relationship

A relationship that runs a little deeper than the dependency, the association provides
a mechanism for one object to contain another object. The UML provides two types
of associations to further help define your relationships: aggregation and composition.

Aggregation Association

An aggregation association is responsible for modeling a “has-a” relationship
among peer objects. The has-a wording means that one object contains another. A
peer means that one object in the association is no more important than the other.
Figure 2.6 provides the UML notation of an aggregation association.

FIGURE 2.6 UML aggregation association.

A real-world example of an aggregation association can be the relationship be-
tween a franchise such as any fast food restaurant and the everyday customer. In this
relationship, clearly the fast food outlet and the customer can operate independently
of each other. If the franchise outlet goes out of business, the customer will still exist
and can buy their favorite food product from another store. Likewise, if the cus-
tomer no longer purchases from the outlet, the store will still remain in business.

Composition Association

Composition associations are more rigid than the aggregate. The difference be-
tween the two is that a composition is not a relationship among peer objects. In
other words, the objects are not interdependent upon each other. Figure 2.7 pro-
vides the UML of a composition.

Design Fundamentals 37

Franchise HQ ' Franchise Outlet

FIGURE 2.7 UML composition association.

A real-world example of a composition association is any typical food franchise
such as FastFoodlInc. There is a central office that oversees and manages every Fast-
Foodlnc franchise outlet. These outlets cannot exist independently of the central
office. The composition association signals to you that if FastFoodInc’s central of-
fice goes out of business, then so must each franchise outlet (since they can no
longer represent the FastFoodInc brand). However, the converse is not true. If a
franchise outlet closes, the central office might still remain operational.

Generalization Relationship

The generalization relationship models the inheritance of one object to another. In
other words, it is a relationship between the general (interface) and the specific. For
this reason, you can substitute any child object for the parent class. Figure 2.8 de-
tails the UML representation of a generalization.

peon:IRenderer This i our interface to handle rendering

Y

This is the OpenGL impl rrtﬁ ' IR d S
peon::DGLRenderer E & the Upen Implamentanon enderar

FIGURE 2.8 UML generalization relationship.

38 Game Programming in C++: Start to Finish

The generalization is a physical manifestation of the is-a relationship that you
should be familiar with in C++.

SOFTWARE REUSABILITY

Reusability is another important concept to understand in all areas of development
including games. For the purposes of this chapter, reusability can be defined as both
code reuse and design reuse.

Code Reuse

Code reuse is a fairly obvious concept for most game programmers, but it is never-
theless an important aspect of reusability that can save you months of work.

As you build your experience in game programming, you will usually en-
counter situations in which you are redeveloping the same functions, methods, or
objects. All of this code needs to be properly tested before being migrated into your
game, and so you should only be redeveloping what is necessary in any new project.
Generic modules, such as interfacing with the operating system, creating a window,
and so on, should be coded and tested one time and placed into a central library or
code repository for future projects. The small engine that you will create in this
book makes use of the STL, which is a good example of code reuse.

It can be typical for your first game to take longer than any subsequent ones. After
all, you might just be learning how to do things for the first time, along with build-
ing a small set of common functions and objects with which to work. Subsequent
titles can take advantage of these objects, which allows you to focus more quickly on
implementing the higher level objects in your game. The only caveat here is to be
careful of over specification. Reuse done properly should reduce the amount of
code size and complexity. Reuse done incorrectly can lead to heavyweight frame-
works in which only a small fraction of objects are used.

Although not as obvious as the code reuse aspect of software, design reuse refers to
the common problems of software engineering that are solved a repeated number of
times. This is evident in most game programming circles or newsgroups, in which
the same types of questions are discussed again and again. If you abstract the ap-
proaches to solve these repeatable problems, you will get what are known as design
patterns. Design patterns aid in describing the optimal design solution to a common
problem. You will learn some of the more common design patterns that can help
you get past any hurdles in your game. Only a small selection of helpful design pat-

Design Fundamentals 39

terns will be presented for use with your project. You should take the time to find
some other quality design patterns that can be implemented as well.

With the Internet at your fingertips, there is no need to reinvent the wheel.

YO pattern 1: The Object Factory

The object factory is a class whose sole purpose is to allow the creation of families
of objects. This usually implies that all of the objects that can be instantiated by the
factory are derived from the same abstract base class. Listing 2.1 demonstrates one
example of an object factory pattern.

LISTING 2.1 Using an Object Factory

//BaseObject — this is the lowest level object that we derive
//others from for this design pattern.

//In other words, an ABC (Abstract Base Class).

class BaseObject

{

public:
BaseObject(){}; //constructor
virtual ~BaseObject(){}; //virtual destructor
float %, ¥, Z; //arbitrary member data
virtual void doMethod(){}; //arbitrary method

}s

//This is the ObjectA derived from BaseObject
class ObjectA : public BaseObject

{
public:
ObjectA(){}; //constructor
~0ObjectA(){}; / /destructor
void doMethod(){}; //do some arbitrary thing
}s

//This is the ObjectB derived from BaseObject
class ObjectB : public BaseObject

{
public:
ObjectB(){}; //constructor
~ObjectB(){}; //destructor

void doMethod(){}; //do some arbitrary thing
b

40

Game Programming in C++: Start to Finish

//snip
//This demo ObjectFactory is used to generate new BaseObject
//instances.
//OBJECT_A — identifier for the ObjectA class
//OBJECT_B — identifier for the ObjectB class
BaseObject* ObjectFactory::create_object(int type)
{

BaseObject* pObj = NULL;

if(type == OBJECT_A)

{

pObj = new ObjectA();

}else if(type == OBJECT_B)

{
pObj = new ObjectB();

if(pObj){ pObj->doMethod(); } //if object exists, call doMethod

return pObj; //return our new object

Pattern 2: The Singleton

The singleton pattern ensures that one and only one instance of a particular object can
exist in your application. This is helpful when you want to guarantee that you have only
one instance of an object, such as the object encapsulating your audio or video hard-
ware. Listing 2.2 details this design pattern that is implemented within the Peon engine.

LISTING 2.2 /PeonMain/include/ISingleton.h

/**

* Template class for creating single-instance global classes.

* The code in this file is taken from Article 1.3 in the the book:
* Game Programming Gems from Charles River Media with the

* copyright notice going to Scott Bilas.

i A

template <typename T> class ISingleton

{
protected:

/** The static member object */
static T* ms_Singleton;

Design Fundamentals

public:

/**
* Constructor
L
ISingleton(void)
{
assert(!ms_Singleton);
ms_Singleton = static_cast< T* >(this);
}

/**

* Destructor

g

~ISingleton(void)

{ assert(ms_Singleton); ms_Singleton = 0; }

/**

* This method just returns the internal member by

* reference

* @return T& - reference to internal abstract Type

*

static T& getSingleton(void)

{ assert(ms_Singleton); return (*ms_Singleton); }

/**
* This method just returns the internal member by
* a pointer
* @return T* - pointer to the internal abstract Type
*)
static T* getSingletonPtr(void)
{ return ms_Singleton; }
2]

//snip

//Now to use it in your code.

//The FileLogger object in the Peon engine just dumps info
//to a text file. You will learn about it later on, but here's
//a sample of its use (since it's derived from an ISingleton).
new FileLogger(PEON_LOG_DEBUG);

//Physically open the log file
FileLogger::getSingleton().openLogStream("PeonMain.log");

42

Game Programming in C++: Start to Finish

//Within any other module, you can grab the handle to the

//logfile by using the proceeding code.

FileLogger::getSingleton().logDebug(“Necronomicon”, “Klaatu Verata
Nikto”);

Pattern 3: The Publisher—Subscriber Pattern

This design pattern is useful for keeping the state of objects synchronized using a
one-way propagation of change notification. Normally, this means that you have
one or more objects designated as subscribers who register themselves with a central
object known as the publisher. When the state of the publisher is modified, it then
proceeds to notify each of the known subscribers who can decide what to do with
the information. Listing 2.3 demonstrates one way this could be done.

LISTING 2.3 Using a Publisher-Subscriber Pattern

//This object is the subscriber object which just
//contains a method that allows it to be notified by
//the Publisher.

class Sub

{

public:
Sub(){}; //constructor
virtual ~Sub(){}; //destructor

//notification method
virtual void onNotification(Pub* the_publisher){};
}s

//This object is the publisher object which has a container
//to store the list of Subscriber objects.
class Pub
{
private:
std::1list<Sub*> m_oSubscribers; //list of subscribers

public:
Pub(){}; //constructor
~Pub(){}; //destructor
bool registerSubscriber(Sub* pSub); //add a new Sub to the list
void notifySubscribers() //iterate through the subscribers

{

std::list<Sub*>::iterator it;

Design Fundamentals 43

for(it = m_oSubscribers.begin();
it != m_oSubscribers.end(); ++it)
{
(*it)->onNotification(this);
}
}

b

Pattern 4: The Facade Pattern

Known most of the time as a type of manager class, the fagade design pattern enables
you to provide a single object, which behaves as an interface to a group of similar re-
lated objects. One example of this pattern is to use a fagade interface to communi-
cate with your input or graphics subsystems. This object is especially useful at
reducing the amount of coupling, or object interdependencies, in your application.
By minimizing the amount of coupling in your code design, you reduce the amount
of time spent on replacing any subsystems should there be a necessity to do so. List-
ing 2.4 provides some background behind the facade design pattern.

LISTING 2.4 Fagade Design Pattern

//This object contains our graphics device — say OpenGL.
class GraphicsDevice
{
public:
bool loadGraphics();

b

//This object encapsulates the texture resources used by our
//game.
class TextureManager
{
public:
bool loadTextures();
}s

//This object encapsulates the font resources used by our game
class FontManager.
{
public:
bool loadFonts();
};

a4 Game Programming in C++: Start to Finish

//This "parent" object encapsulates the graphics device,
//texture manager and font manager objects. When you need
//access to one of those objects, you have to go through
//THIS one first.
class GraphicsSubsystem
{
private:

GraphicsDevice m_oDevice;

TextureManager m_oTexManager;

FontManager m_oFontManager;

public:
//This method demonstrates how useful the Fagade pattern is.
//We use it to indirectly work with lower-level objects.
bool loadGraphicsSubsystem()
{
bool value = true;
value = m_oDevice. loadGraphics();
value = m_oTexManager.loadTextures();
value = m_oFontManager. loadFonts();
//0bviously proper error checking is skipped. We're
//just trying to demonstrate the design pattern here!
return value;

b

ANATOMY OF A GAME

Although games are incredibly complex and performance-intensive pieces of soft-
ware, they can all be abstracted to some common runtime phases that will be out-
lined and described here.

These phases are meant to outline the operational lifetime of your game while it is
running for the player. This is not an abstraction to the entire process of creating a
WorE game in terms of management, product life cycle, support, and so on.

Initialization Phase

The initialization phase is the first phase involved in your game and obviously the
most important. Within this phase your program attempts to create interfaces to
the underlying hardware available on the machine and attempts to perform any or
all of the following list of actions:

Design Fundamentals 45

Your video card is located and initialized to any desired resolution.

An interface to your sound hardware is created and opened.

Interfaces to your keyboard, mouse, and, optionally, the joystick are created.
Networking interfaces are loaded and initialized.

Any game-specific objects or data structures are loaded and initialized.
Game-specific graphics and audio resources are loaded and initialized.

When this phase is completed successfully, the game then proceeds to the
process phase.

It is normally a good practice to load as many objects and resources as possible
for your game in this phase.

Throughout the course of the process phase, the game is responsible for updating
all of the game world objects, along with rendering (that is, drawing) them to the
screen. You can, therefore, subdivide this phase into two subphases: updating and
rendering.

Updating Phase

The updating phase is responsible for a host of actions along the lines of the fol-
lowing:

m Updating all the game world objects for the current map, location, or level.

B Processing any collision-detection calculations to test which objects have hit
other objects to determine which ones are active or inactive within the game
world.

B Gather and process any input from the player to determine what your object
(that is, the Avatar) is attempting to do.

® Gather and process any network events to determine your relation to other
players in the game.

B Process any artificial intelligence routines for computer-controlled objects or
players.

m Start or stop any appropriate audio file.

Rendering Phase

The rendering phase is responsible for drawing all of the game world objects to the
screen. You must perform many chores here in terms of video object management,
but the primary goal of this phase is to get everything on the screen as quickly as
possible.

46 Game Programming in C++: Start to Finish

The game continues in the process phase until it has received a signal or mes-
sage that you want to quit the game. It will then move into the destruction phase.

Destruction Phase

The overall goal of the destruction phase of your game is to clean up any object or
hardware device used during the lifetime of your game. You will need to perform
tasks like the following:

Clean up all of the audio resources and the audio hardware.

Deallocate all of the video resources and the video hardware.

Clean up all of the input devices used.

Shut down and cancel any further network communication and/or device
interfaces. ;

Clean up any object memory allocated during the lifetime of the game.

Just about every game moves through these phases in one fashion or another,
and understanding these basics will help to provide an overview to how things are
supposed to work in your game projects.

THE SUPERASTEROIDARENA DESIGN DOCUMENT

Design documents created using the waterfall model often can be notoriously large
and complex in nature. One immediate problem with this approach is that as the
document grows to encompass the project, not everyone in the team will properly
update it. Another issue with these large design documents is that some team mem.-
bers might not even reference it because they feel that some objects or design deci-
sions that are documented might already be outdated. In an attempt to create a
design document that is both usable and maintainable, you can benefit from some
of the Agile design techniques to create the SuperAsteroidArena project’s design
documentation. Although the Agile design approach is tailored for working with a
customer to keep the project moving and updated, you will need to wear two hats
during development of SuperAsteroidArena as you are your own client.

Drafting a Project Overview

The initial project overview should contain a one- or two-line sentence describing
the overall game. This should be an exciting description of the whole purpose of the
game, which will attract any potential customers or players. Listing 2.5 details the
project overview.

Design Fundamentals 47

LISTING 2.5 SuperAsteroidArena Project Overview

Project Overview: The overall goal of this game is to annihilate
your opponents in space arena combat. Using your laser guns, you
need to maneuver your ship to rack up the most kills, while
avoiding death as long as possible.

What Type or Genre of Game Is It?

Now that you have defined an overview of what is taking place in your game, you
need to decide what type or genre of game you are creating. Although this small list
of game genres is an attempt to categorize or classify existing software, there are
many examples of mutated types of games that blend together several different
genres.

Action/Arcade: This type of game usually involves the player being really
involved in the game world in order to win. Usually an action game has the
player performing a lot of fast and repetitive actions such as shooting a lot of
enemies while simultaneously dodging hails of lasers or bullets.

Strategy: A strategy game gives the player the ability to plan out his moves,
which usually centers on directing your resources to defeat the other players.
For strategy games, you can usually spot two subgenres of this game type:

Real-Time: This type of strategy game forces the player to make quick
decisions where they cannot spend too much time planning out their
empires. Although they start out slowly, most real-time strategy (or RTS)
games quickly ramp up the action, forcing the player to frantically move
their units around the game world.

Turn Based: These types of strategy games are much slower than RTS
experiences and give the player as much time as they need to decide what
action to perform next. These games usually work by dividing the play into
rounds or turns. Usually at the start of each round, the player is given a cer-
tain number of resources with which to work. After the player has used up
these resources, the turn usually ends.

* Adventure: Although these types of games are not released as often anymore,
adventure games revolve around the player experiencing a story through the
game. They usually involve some type of quest for the player to accomplish. For
the most part, they are single-player games that involve the player interacting
with the environment to complete tasks or quests which reveal clues to proceed
within the adventure toward the final goal.

48 Game Programming in C++: Start to Finish

Puzzle: Puzzle games are very popular among the crowd of players who enjoy
being presented with a problem they must solve. They are enjoyed by a wide
range of players and typically have a difficulty of play that ranges from begin-
ner to advanced as the player moves through the game. Puzzle games vary
tremendously in gameplay, as some are slow paced but others build the action
at a frantic pace.

Platform: Platform games are another popular category, where the goal of the
game is to complete a journey or quest of some nature. You move your char-
acter through the game world by negotiating different levels or maps and usu-
ally must collect items along the way to help you continue onward.

For the SuperAsteroidArena project, you can note in the documentation that it
should be considered an action/arcade game.

Deciding upon a game genre will also help describe the project to your friends and
any other potential customers.

NOTE

Who Is Your Audience?

This is a very important and critical question that needs to be answered as clearly
and as early as possible in your project. The more detail that you can provide here,
the easier it will be to create a list of requirements for the game itself along with pro-
viding some direction through the rest of the project. You need to decide who will
benefit the most from your game. Within most people or companies who are de-
veloping their own games, the audience can be broken into two basic categories:

The casual gamer: Depending upon whom you ask, this type of gamer com-
poses the bread and butter of the audience who typically supports a lot of
shareware titles on the Internet today. They represent an audience who enjoys
playing games, but also has other priorities in their lives such as work or fam-
ily. In other words, they are the type of player who wants to jump into the
action for shorter periods of time. This type of gamer is also typically not very
computer savvy. They are usually not very knowledgeable about upgrading any
computer hardware, or even the basic risks or benefits behind upgrading their
core software. In other words, to target a more casual type of player, you need
to ensure that your game will run on older hardware with little to no configu-
ration required to execute your game. They should be able to double-click on
the icon to launch your game. Period.

Design Fundamentals 49

The hardcore gamer: This type of gamer is usually more computer savvy and
enjoys the types of games that push their machine slightly harder than a casual
game would (on average). This type of gamer would be more willing to sit
down and play your software for a longer period of time or at the very least, in-
vest more into your game. They are usually not afraid to update any core soft-
ware components, such as applying new video drivers and so on, to play your
game properly. With the more hardcore crowd, you can afford to use slightly
later technology, such as OpenGL extensions or a newer version of DirectX.

Why Make the Game?

Another critical question to answer at the beginning of the project is why you want
to make this game. Instead of answering with a vague (and unmeasurable) response
such as, “to make money” or “to have fun,” it might be more useful to describe why
someone will choose your game over a similar product even if you have no intention
of selling the game. There are many different clones of Asteroids available on the In-
ternet, for example, so you should be prepared to discuss why a player might want
to choose your version of SuperAsteroidArena over another clone game. This is a very
important part of the design process, as you will need to demonstrate to anyone that
your game is different.

What Do You Want To See?

Although this can change during the project development or testing stages, describe
here what you are envisioning as the outcome of your project. When the player
launches the finished product, what should he see?

For example, in SuperAsteroidArena, the player should be able to fly around in a
section of space with the ability to blow up the other players to win the round. The
player should be viewing the game world from an overhead bird’s eye vantage point
as they fly through a quadrant in space inhabited by asteroids and the other players.

What Does It Offer?

If a player were to download and purchase your Asteroids clone (or any game), what
features does your game offer that separates it from the others? This is definitely a
follow-up question to the previous two. To help decide on a feature list that you
want to promote for the game, begin by doing some basic market research. Now that
you have chosen the genre of your game, along with what type of player you are tar-
geting, you can spend some time on the Internet to find other comparable products
and create a document detailing how they are similar and how they differ. Although

50

Game Programming in C++: Start to Finish

you can find more resources in Appendix F, “Further Resources,” game portal sites
such as RealArcade.com or BigFishGames.com provide a common gateway to hun-
dreds of downloadable games. Although it is tough (that is, impossible) to find ac-
tual sales figures for these games, most of the game portal sites will have a ranking of
some kind, which can help discern what is a popular sell. Select a few of the top-sell-
ing games, which more or less match the type of game you want to create. Study the
games themselves from a more analytical approach. What type of system require-
ments do they have? Is the gameplay between them all similar, or do they try to make
a different experience?

DRAFT AN INITIAL LIST OF TIMEBOXES

After you finish answering the preliminary questions for your design document,
you will then segment the project into several timeboxes to accomplish the overall
goal of creating the Asteroids clone. At the end of each timebox, you can evaluate
how the subsection fits into the overall project as well as verifying that it does not
need any modifications.

For this project, you will be working with five timeboxes:

Foundation and state timebox: The goal of this segment is to create the
underlying objects to launch the game. This segment should also have some
rudimentary states defined for the game, which you will fill in as the project
progresses.

Graphics timebox: The goal of this segment of the project is to create the un-
derlying objects necessary to create and display some of the basic graphics of
the game including any graphical user interface components. This is covered in
Chapter 10, “Working with Input Devices.”

Input and sound timebox: The goal of this segment is to create and add the
components necessary to the game to provide audio feedback and properly
communicate with your input devices. This is covered in Chapter 12, “Input
and Sound Timebox.”

Networking timebox: The goal of this segment is to ensure that proper net-
work communication is taking place between the game world and every player
involved in the game. This is covered in Chapter 15, “Networking Timebox.”

Special effects timebox: The goal of this timebox is to add some special effects
to the game to make it far more visually appealing. These aspects are covered in
Chapter 20, “Polish Timebox.”

Design Fundamentals 51

As you work through the timeboxes in this project, you will be constantly evaluat-
ing or updating the design document. This is a piece of the project that should def-
initely be added into your CVS repository.

The design document might seem a little on the lighter side, but you will be
adding only what you need as you work through each timebox. This is a bit of a
chicken-egg scenario—if this is your first game project, you will not really be aware
of what kind of components are needed in the game you are trying to design. This
is the reason behind learning an iterative design approach for this book. As you
work through each timebox or phase of implementation, you can make iterative
adjustments to the design.

WHO IS INVOLVED?

Although not a specific part of a game design document, but more of a project man-
agement aspect of the development, it is still important to decide on who is involved
in the project and what roles they are to play. Although this book is assuming you are
virtually the single stakeholder, you might eventually decide to incorporate extra
help where or when it is needed. For example, you might decide to purchase your
sound and art assets from an artist over the Internet, and so on. This all depends on
where your strengths of the project lie along with how much time and energy you
can invest into the game.

BUDGET CONCERNS

Even if you are creating (or planning) your game “for fun,” it might be wise to con-
sider developing a budget. The day may come where you might be creating a pro-
ject for actual commercial sale and would definitely need to have a grasp on the
budget surrounding your game. (How else do you calculate profit margins?)

Budget planning involves tracking the financial cost of the project (in strict
dollars) along with the “effort” cost (in terms of time). Some developers argue
that both are one and the same, but it might help to consider them separate enti-
ties for now.

If this is your first “serious” project, or indeed the first project you want to use
tracking measures on, then it would help to create a spreadsheet to actasa logbook
for the project. Although at first it might seem like a chore, try to keep an updated
account of the time and money spent on the project. Even if you are only able to

52

Game Programming in C++: Start to Finish

spend 30 minutes a day on “project-related” issues, put it in the log. It will be only
as accurate and detailed as you keep it.

When the project is over, you can better understand how and where you are
spending your time and money. This can be one method of pinpointing any mys-
terious sinkhole problems, but it also will help you better estimate your effort on
future projects.

As you gain more experience, you will become better at gauging how long it will
take you to implement certain types of modules, and so on. This can be a critical
factor in deciding on a project to invest your efforts.

Even if you are the only developer involved in the project, you should not be
under the impression that working on your own time is “free.” For the first few
projects, grant yourself an arbitrary salary or hourly wage. When the project is fin-
ished, use this wage value to determine how much your own project cost you if you
were to pay yourself. This can be another determining factor in the type of projects
you will embark upon.

DEMO VERSUS REGISTERED FEATURES

In nearly every game released on the Internet today, the standard approach for
most companies or developers is to produce a demo version of the software, which
provides the player with a small insight into the game world. It gives the player a
chance to test out the game’s basic gameplay along with any other features you want
to expose to the player to further entice or convince him into buying the full ver-
sion of your product, the registered version. In this design phase, you have already
created a list of features that your game will have. Depending upon how serious you
are about the project, you should also break this list into features that are included
in the demo (or shareware) version of the game and which ones are featured in the
registered version. Within the demo version of the game, it is also a common ap-
proach to present the player with a friendly screen describing why they should
bother to register your product by sending you money. Also known as a nag screen,
this gives you a chance to advertise the features that you restricted to the registered
version of the game. Perhaps you include more weapons for the player or more
maps and levels to enjoy. Perhaps the registered version allows up to 16 players to
participate in a multiplayer session, whereas the demo version might only allow 2
or 4. These lists of features are obviously dependent upon the type of game you are
creating, so do not forget what you learned from your basic market research.
Within the group of products you are competing with, for example, they might all
include dozens or hundreds of maps to the player after they register.

Design Fundamentals 53

CHAPTER EXERCISES

1. Within the UML, how do you design a class or method that is abstract?

2. Understand the advantages and disadvantages of the classic waterfall design
method compared to the iterative process. Further investigate the design
methodologies such as eXtreme Programming (XP) or Pair Programming
techniques.

3. Although the waterfall process might not seem ideal for most game projects,
discuss any situations in which the waterfall method might be necessary.

4. Take some time to research other useful design patterns that can help your
code practices. Although not always the “magic bullet,” design patterns
can simplify many aspects of your application and can improve your de-
sign and programming skills.

SUMMARY

You were introduced to a wide variety of common software engineering topics within
this chapter. You learned the differences between the classic waterfall and iterative de-
sign methods. You were also introduced to the concept of software reusability along
with a short list of design patterns that are useful in solving some of the common de-
sign problems facing most developers. Although brief, the introduction you were
given covered using the Unified Modeling Language to learn more about document-
ing and designing your software. You also were provided with an introduction behind
the fundamentals of how a game operates and functions. Finally, you were also in-
troduced to the design document and how to create one that will help decrease the
amount of time spent actually implementing your game. In the next chapter, you
learn how to develop the foundation of your game engine using the SDL.

Introduction to SDL
and Windows

Chapter Goals

Introduce the SDL toolkit.

Demonstrate how to startup, run, and shutdown SDL.
Provide an overview of the SDL event queue.

Introduce some file logging and INI file reading mechanisms.
Explore the Component Object Model.

Introduce a Dynamically Linked Library.

saw listed in Chapter 1, “Game Technologies.” On the Windows platform,

not only are there different versions of the Microsoft DirectX API from which
to choose, but many open source libraries and game development toolkits spanning
many different programming languages are also available.

For creating games on the PC today, several dozen options are available, as you

INTRODUCTION TO THE SIMPLE DIRECTMEDIA LAYER

For this book, you will be using the Simple DirectMedia Layer (SDL) created and
maintained by Sam Lantiga and a great community of helpful programmers. By
using the SDL as the base toolkit for your projects, you are ensuring that your game

55

56 Game Programming in C++: Start to Finish

can function on a wide array of the Windows operating systems as well as making
your programs more portable to other systems such as Linux or the MacOS.

Besides having the ability to create cross-platform code, another benefit of
using the SDL is that it assumes the lower-level responsibilities of window creation
and management, which can become an unnecessarily daunting and tedious
process for the beginner Windows programmer. Most of the skills and concepts
that you will learn by using SDL can also be directly applied to any future DirectX
project.

For setting up and configuring your C++ compiler to work with the SDL, please refer
to the instructions listed in Appendix A, “Setting Up the SDL and the Compiler.”

NOTE

Why Use SDL Instead of DirectX?

Although some of today’s AAA (that is, big budget) game projects developed on the
PC use DirectX, this book focuses on using the SDL (and OpenGL) toolkit for cre-
ating your game. Not only are previous versions of Visual Studio not supported in
the latest version of the DirectX SDK, there are platform restriction considerations
as well. Users of the DirectX 9.0c SDK will be able to use only the Windows XP and
higher family of products to develop games, whereas SDL and OpenGL support
nearly every version of Windows since NT along with major platforms such as
MacOS and Linux. In other words, using SDL and OpenGL allows you to expand
the potential audience of your game, which can lead to more interest and more
sales. SDL is also a proven commercially viable toolkit for the shareware develop-
ment community. Many successful independent projects have been released using
this library.

SDL “Hello World”

The convention among learning nearly any programming language is to create a
skeleton application that displays the text “Hello World” to the screen or console.
Even though this book focuses on game programming, it will not deviate from this
convention.
After you have configured your favorite IDE/compiler according to the in-
structions given in Appendix A, you can begin with your first SDL application.
(< > Listing 3.1 presents you with a basic SDL program located on the CD-ROM in
0N THE €D \chapter_source\chapter_03\HelloWorld.cpp.

Introduction to SDL and Windows 57

LISTING 3.1 SDL “Hello World”

#include <SDL.h>

int main(int argc, char* argv[])
{
//initialize SDL and the video subsystem
if(SDL_Init(SDL_INIT_VIDEO) < 0)
return -1;

//signal SDL to change the text of the main window
//to "SDL Hello World"
SDL_WM_SetCaption("Hello World", "Hello World");

//create an SDL_Surface object which represents the
//game window
SDL_Surface* screen = SDL_SetVideoMode (640, 480, 0, 0);

//load the SDL logo bitmap to a temporary surface
SDL_Surface* temp = SDL_LoadBMP("data\\textures\\sdl_logo.bmp“);

//create the working SDL_Surface which matches the
//display format of the temporary surface
SDL_Surface* bg = SDL_DisplayFormat(temp);

//free the memory allocated to the temporary SDL_Surface
SDL_FreeSurface(temp);

SDL_Event event;
bool quit = false;

//This is the main message loop of the game
while(!quit)
{
//check the message queue for an event
if (SDL_PollEvent(&event))
{
//if an event was found
switch (event.type)
{
//check to see if the window was closed via the "X'
case SDL_QUIT:

58 (hmem%mmmmynu+smnmﬁmw

//set the quit flag to true
quit = true;
break;

//check the keyboard to see if the ESC key was pressed
case SDL_KEYDOWN:
switch (event.key.keysym.sym)
{ .
case SDLK_ESCAPE:
/1set our quit flag to true
quit = true;
break;

}

break;

//draw the background sprite
SDL_BlitSurface(bg, NULL, screen, NULL);

//update the current window
SDL_UpdateRect(screen, 0, 0, 0, 0):3
}

//free the allocated memory for the background surface
SDL_FreeSurface(bg);

//quit SDL and allow it to clean up everything
SDL_Quit();

//return control to Windows with no errors
return 0;

Do not forget to link your project to the sdl.1ib and the sdlmain.lib libraries.

woTE
After you compile and run the application, you should see a window appear

similar to Figure 3.1.

Introduction to SDL and Windows 59

FIGURE 3.1 HelloWorld output.

The approach taken by the HelloWorld application is to demonstrate how easy
it is to get a simple SDL application up and running. The first task is to initialize the
SDL subsystem and internal components, which is accomplished by one function
call: spL_Init. Next, you use SDL to generate the main window for your applica-
tion. In this case, the window size and video resolution is 640 pixels wide by 480
pixels high (also known as 640 x 480). The next step is to load the SDL logo bitmap
onto a structure that SDL can internally manipulate, the sbL_Surface. After the
bitmap is loaded into memory properly, the main application enters the main loop.
Until you exit the application by killing the main window, the program is in an in-
finite loop and is constantly flipping the window device buffers in order to present
the SDL logo image onto the screen. You will learn more about this whole process
as you begin to add components to the Peon engine, which is built upon the SDL
toolkit.

60 Game Programming in C++: Start to Finish

Creating the EngineCore

One of the main components of the Peon engine, which is the game engine that you
will be using throughout this book, is the Enginecore object that is responsible for
starting up and initializing the important subsystems. It is also responsible for pro-
cessing the SDL message queue, which receives event notifications from both events
generated by the player and the underlying operating system. Although you will
learn more about this object in the next chapter, it contains most of the backbone
that is responsible for communicating with the operation system. Listing 3.2 doc-
uments the EngineCore object definition.

LISTING 3.2 Peon::EngineCore Definition

//This is the main core object of the Peon library which
//internally initializes the SDL components and puts the
//application into the main loop. Ignore the PEONMAIN API for
//now. It is just signaling that you are marking this object
//to be exported from the PeonMain.DLL
class PEONMAIN_API EngineCore : public ISingleton<EngineCore>
{
public:

/**

* default destructor

®/

~EngineCore();

/**
* Default Constructor */
EngineCore();

static EngineCore& getSingleton(void);

static EngineCore* getSingletonPtr(void);

/**
* @param strWindowTitle - our application window title
* @param strIniPath - our path to our .INI file
* @return result if we succeeded or failed initialization
%
bool loadEngine(const String& strWindowTitle,
const String& strIniPath);

i e e

Introduction to SDL and Windows 61

/**

* This method is responsible for unloading
* @return nothing

i

void unloadEngine();

/**

* This method is responsible for launching and running our
* entire

* core and application

* @return int - any error code

i)

int runEngine();

s

Deriving itself from the ISingleton object that you saw in Chapter 2, “Design
Fundamentals,” the EnginecCore definition so far is fairly basic and provides you
with a simple method to load your engine and allocate some basic system resources
(during the initialization phase of your game). It also provides a method to clean up
any object memory allocated during the loading phase and/or the lifetime of the en-
gine itself (that is, the destruction phase). Finally, it provides a method to launch
the main loop of the engine (that is, the process phase). It is important to introduce
and cover this object at this time, as it forms the heart of the Peon engine, along
with nearly every game project upon which you will ever embark.

Initializing SDL

When you use the loadEngine method of the EngineCore object that you just de-
fined, you are internally loading and initializing needed components of the SDL.
Take a look at the EngineCore.cpp file and notice the use of the spL_Init function
shown in Listing 3.3.

LISTING 3.3 EngineCore::loadEngine

bool EngineCore::loadEngine(const String& strWindowTitle,
const String& striIniFile)
{
int retval = 0;
char strOutput[512];

62 Game Programming in C++: Start to Finish

//The SDL_Init method does all the grunt work of initializing

//the subsystems and components of SDL for you.

retvVal = SDL_Init(SDL_INIT_EVERYTHING Vo

if(retval < 0)

{
//there was some kind of error. Make a note of it
sprintf(strOutput, "Failed to initialize SDL subsystem %s",
SDL_GetError());

/loutput the error message to the debug window of the IDE
OutputDebugString(strOutput);

//do the garbage collection
unloadEngine();

//return creation failure
return false;

//if the initialization completes successfully, simply

//change the title of the main window to our application

SDL_WM_SetCaption(strWindowTitle.c_str(),
striWindowTitle.c_str());

return true;

.}
The SDL/Windows Event Queue

A main driving force behind the design of Windows is that it is an event-driven op-
erating system. This means that as you perform an action in your application, either
by clicking the mouse or resizing your application window, the corresponding
event is being generated and posted to your application’s main message queue by
the operating system. Figure 3.2 shows an overview of this process.

The SDL follows this same design philosophy, and every SDL application must
define and use an event queue to listen for any specific events. Listing 3.4 displays
the basic event queue that is contained within the EngineCore: :runEngine method.

Introduction to SDL and Windows 63

User Moves Messags
JoyStiCk Message
Message
Joystick
Event Message Event
Queue

FIGURE 3.2 Event messages generated and passed to the queue.

LISTING 3.4 EngineCore::runEngine

int EngineCore::runkEngine()

{
bool bDone = false; // is main loop finished?
SDL_Event event;

// as long as our main loop is not done
while(!bDone)
{
while(SDL_PollEvent(&event))
{
/1 while we have an event message in the queue,
// you need to determine what it is
switch (event.type)

{

case SDL_QUIT : // if user wishes to quit
bDone = true; // this implies the main loop is done
break; :

64 Game Programming in C++: Start to Finish

default: //default is to do nothing
break;

} //end switch
} //end while(SDL_PollEvent)

//update the game here since the events are done processing
//ie. the Process Phase

} //end while(!bDone)

//the game is finished and is exiting. Do the garbage collection
unloadEngine();

//no errors, return 0

return 0;

}

This event queue in Listing 3.4 is a very basic method of structuring the main
loop of your application. You are putting the program into a continuous loop,
which is only responsible for listening to the SDL event queue. If there was a mes-
sage received in the queue, test it to see whether it is the quit event. If it is, then sig-
nal to the main loop that you are ready to exit. If it is not the quit event, or if there
are no messages detected in the event queue, then it is time to process one frame of
your game (that is, the process phase). After one frame has been updated and ren-
dered, the loop will start again at the beginning to test whether there is an SDL
event message waiting in the queue.

Cleaning Up SDL

When your application has finished or the user has decided to quit your game, it is
necessary to perform some cleanup procedures in order to properly free up any
memory used by your application. You should never rely on the operating system
to do the work for you, as it is not always guaranteed that it will. To clean up any of
the underlying SDL constructs and objects, you simply need to use the SDL_Quit
function used in the unloadengine method as shown in Listing 3.5.

LISTING 3.5 EngineCore: :unloadEngine

void EngineCore::unloadEngine()

{
//clean up any allocated memory and/or objects
//be sure to call this last to finish the SDL cleanup
SDL_Quit();

}

Bl —— =

Introduction to SDL and Windows 65

Big Endian versus Little Endian

Because SDL is a cross-platform library, you might have aspirations to port your
project to other operating systems such as the MacOS or Linux. Even if you stick to
the SDL to handle most of the underlying architecture of your game or engine, you
occasionally might have to deal with Endian issues depending on whether or not
you are working with code targeted for the Intel family of processors used in Win-
dows, or the RISC architecture used on the MacOS platform. Originally named
from Gulliver’s Travels, which takes place in Lilliput, the Endian order refers to the
order in which the bytes of a 16- or 32-bit word data type are stored in computer
memory. Figure 3.3 shows more details.

MSB LSB
3 X .
Big Endian
MSB LSB
0 _ ' 31
Little Endian

FIGURE 3.3 Big-Endian versus little Endian.

Big-Endian is when the most significant value in the data (that is, the big end)
is stored at the lowest storage address (that is, the first); in the little-Endian archi-
tecture, the least significant value of the data is stored at the lowest storage address.
By default, the version of the SDL library you are linking to for this book is using
the little-Endian architecture since you are more than likely working on an
Intel/ AMD-based processor.

ADDING THE FILELOGGER

The next step is to allow for some application-level file logging. If and when other
subsystems fail to initialize and start up, you need to be made aware of the key

66

ON THE CD

Game Programming in C++: Start to Finish

reasons for the generated failures. A FileLogger object is a valuable tool for any pro-
grammer to record any key events or errors generated by your application, which
might not always be able to access the console to use a printf statement.

Although the Visual Studio environment provides a basic debugging mecha-
nism by allowing your code to throw comments to the debugging window via the
OutputDebugString API call, which is equivalent to a simple printf statement, not
all compilers support this function.

You can create your own text output mechanism that logs statements into a flat
file. This is useful for outputting any debug information you might want to take a
look at, or even for displaying valuable information for support reasons (say to
record the player’s operating system version, any DirectX/OpenGL version infor-
mation, video card driver manufacturer, version of the drivers, and so on). Take a
quick look at the FileLogger object that resides in the code for this chapter on the

CD-ROM.

This object can now be added to the EngineCore object, in order to provide a
logging mechanism (see Listing 3.6).

LISTING 3.6 FileLogger Object Sample Code

//create a new instance of the FileLogger and set it to
//filter no messages..ie. log everything

new Filelogger(PEON_LOG_DEBUG) ;

//open the log file
FileLogger::getSingleton().openLogStream("PeonMain.log");

//log the first statement as a "debug" message
FileLogger::getSingleton().logDebug("EngineCore", "* starting log
file *");

/* snip */

//log an "error" statement

FileLogger::getSingleton().logError("EngineCore“, “renderer failed
to initialize");

//close the logger

FileLogger::getSingleton().closeLogStream();

Now when you compile and run the project, a text file containing the pesug
level of messages will be created in the same folder as your executable, named
PeonMain.log. The FileLogger object works by implementing a system of logging
levels. When you instantiate this object, you must specify what type of logging level
you want the instance to capture. There are currently four levels of logging with this

Introduction to SDL and Windows 67

object: DEBUG, INFO, ERROR, and FATAL. DEBUG level messages are meant to pinpoint
any potential problems that might occur during the testing of the game. For exam-
ple, an object might not properly initialize, or you might want to verify that a par-
ticular code branch is being executed. The INFO level of logging is just meant to
inform you of events that might be useful for any application tracing—for example,
recording the driver version of OpenGL detected on the system or the amount of
system RAM, and so on. The ERROR level is meant to only capture log events that
record a failure of some kind. This happens usually when a subsystem or some
component fails to properly initialize. If a component registers an ERROR message in
the log, it does not necessarily mean that the game must exit. For example, if your
game detects that no sound hardware is available, it will fail the initialization of the
sound subsystem. However, the game should still function properly; just without
any sound feedback to the player. The final FATAL category is used when the appli-
cation must exit. For example, if the video subsystem fails to initialize then the
game should exit immediately.

Using Windows Initialization Files

Prior to the Windows Registry, application configuration information in Windows
was loaded and stored from a small file known as an initialization or INI file. This
file could contain any parameter or other type of application-specific information
that could be read during the runtime of the application, thereby being more able
to adapt to different system settings of a particular Windows installation. Although
it is far more detailed and massive, the current Windows Registry is more or less a
giant warehouse of INI information.

For your purposes, though, the System Registry is a bit too “hidden” for your
application user, not to mention that you would have to rip out any registry-specific
API should you decide to port your game to another platform. The INI family of
functions introduced by Microsoft is a lightweight approach capable of loading
and storing any type of configuration information that the game could benefit
from.

For example, some perfect information to store or load in an INI configuration
file is the window size of your game, such as 640 x 480 or 800 x 600. This would
allow any client of the game to modify the window size depending upon their ma-
chine resources and resolution preference.

Check the source code for this chapter for more details, but you can now throw
in the IniConfigReader object into -the EngineCore object that already exists. This
gives you the ability to read in potential configuration information such as your
main window size during the runtime of your game.

68 Game Programming in C++: Start to Finish

First, you add some new variables to the EngineCore header file definition, as
well as add a string parameter to your loadEngineCore method for the path of the
INT file defined in Listing 3.7.

LISTING 3.7 Code to Add to Your EngineCore Header File

int m_dwWidth;
int m_dwHeight;
IniConfigReader* m_pConfig;
/* snip */
bool loadEngineCore(const String&, const String&);

Now you need to modify the loadEngineCore method slightly to accommodate
the new object, which is shown in Listing 3.8.

LISTING 3.8 Updated Code for Your EngineCore::loadEngineCore Method

bool EngineCore::loadApplicationCore(const String& strAppTitle,
const String& strConfigPath)

{
//snip
m_pConfig = new IniConfigReader(strConfigPath);

//now read our window size

//by default, if there's no appropriate value in the INI file

//called "WindowWidth"

Liop "WindowHeight", then we use a default value of 640x480

m_dwWidth = (DWORD)m_pConfig->getInt("Application“,
"WindowWidth", 640);

m_dwHeight = (DWORD)m_pConfig->getInt("Application",
"WindowHeight", 480) ;

//snip

S0 now you can create a new file in your project folder called system. ini and
edit it as shown in Listing 3.9.

Introduction to SDL and Windows 69

LISTING 3.9 Sample Configuration Information

[Application]
WindowWidth=800
WindowHeight=600

In the updated main. cpp file, you just need to add the path to your system. ini
file in the method call to 1oadEngineCore noted in Listing 3.10.

LISTING 3.10 Updated main.cpp Code

#include "PeonMain.h"
using namespace peon;

int main(int argc, char* argv([])
{

new EngineCore();

if(!EngineCore: :getSingleton().loadEngineCore(
"WindowTest", "System.ini")))

{

return -1;

return(EngineCore::getSingleton().runEngine());

}

Take a few minutes to play with the 1nI file settings. You have no error check-
ing, so it is possible to specify weird window sizes of 310 X 489 or 1033 x 21, for ex-
ample. Internally, the IniConfigReader uses the GetPrivateProfileInt and
GetPrivateProfileString function calls, which are native to Windows.

THE COMPONENT OBJECT MODEL

Another aspect of programming in the Windows operating system is to under-
stand the principles behind the Component Object Model (COM) technology. Al-
though you do not need to understand the massive inner workings, you should
understand a few design aspects of COM architecture that might come in handy.

70

Game Programming in C++: Start to Finish

The Component Object Model was introduced quite a few years ago by Microsoft
as a guideline for creating component interfaces. It is essentially an interface for cre-
ating black box type objects. You have a set of defined inputs and outputs to each
object, but you do not care about the logic within the components. You only care
that depending upon certain inputs, you expect certain outputs. The basic goal of
COM was to create software components that could be interchanged with each
other, similar in nature to a stack of Lego blocks. In principle, it is a clean way to
organize your software development, as you can isolate (and update) different
components of the application without requiring a complete rebuild (or reship-
ping) of the entire application itself.

For example, you decide to create and ship an application using COM objects
to track and display the player’s information in a Massively Multiplayer Online
Role-Playing Game (MMORG), such as Everquest or World of Warcraft. After some
work with the application, you are able to improve the performance of a COM ob-
ject the application uses to track in game crafting skills. Since the input and outputs
to the COM object have remained the same, you simply need to ship the updated
COM object to your customers rather than have them download the entire appli-
cation again. Do not forget that not everyone is on broadband.

Another benefit to the COM model of component development is that it pro-
vides a way to help track resources within the operating system. By deriving your
COM object from a known COM interface, you can then keep track of how many
times any object is instantiated or destroyed within your application, which is
known as reference counting. The interface itself uses this internal counter to track
how many other interfaces are using it. When an object is created, its internal ref-
erence count is incremented. Similarly, when the object is no longer needed, its ref-
erence counter is decremented.

If your application then exits with any object having a reference count higher
than zero, then you know that there is a memory leak somewhere as you have an
instance of an object being created but not destroyed.

IUnknown is the base COM object from which all the components derive and is
shown in Listing 3.11.

LISTING 3.11 Sample IUnknown Definition within COM

struct IUnknown

{
//this method is used to access the interface
virtual HRESULT _ stdcall QueryInterface(const IId& iid, (void
**)ip) = 0;

Introduction to SDL and Windows 71

//this method is used to increase the interfaces reference count
virtual ULONG __ stdcall Addref() = 0;

//this method is used to decrease the interfaces reference count
virtual ULONG __ stdcall Release() = 0;

b

When the internal reference counter does reach zero, the system’s internal
garbage collector can remove it from memory.

This is also a reminder to clean up any and every object you have used during the
lifetime of your application. This properly decrements the reference counters of

VOTE some of the internal objects, which the system can then clean up properly. If you
leave any objects behind during the garbage collection process, there is no guaran-
tee that Windows will clean it up for you, thereby introducing memory leaks to
your host computer as well as your customers.

THE IUNKNOWN OBJECT

You can also create a primitive reference counting mechanism of your own using
the Tunknown interface defined in the Peon library. Listing 3.12 defines the object.

LISTING 3.12 /PeonMain/IUnknown.h

namespace peon

{

/** This object is used for reference counting to try and help
debug any

* memory leaks */

class PEONMAIN_API IUnknown

{

protected:
/** the run-time type identifier
int m_RTTI;

/** the current reference count of this object */
int m_refCount;

72 Game Programming in C++: Start to Finish

public:
IUnknown() : m_refCount(1){}
virtual ~IUnknown(){}

/** This method just increments our reference count. Ie. we're

making
* a copy of an existing object */
void addRefCount() { ++m_refCount; }
/** This method decrements our internal reference count. Ie.
We're
* cleaning up a copy of an existing object */
bool dropRefCount ()
{
—m_refCount;
if (!m_refCount)
{
//if this is the final instance of this object, then
clean it
//up from the memory heap
delete this;
return true;
}
return false;
}
b
}

In practice this takes a bit of getting used to, but it can also help track down po-
tential memory leaks. Whenever you make a copy of an existing object, it is then the
appropriate time to increment the object’s reference count. When a copy is re-
moved, then you decrement it. Listing 3.13 details this in action.

LISTING 3.13 Using IUnknown

//in this sample, ObjectA is derived from IUnknown
ObjectA* pObjA = new ObjectA();

Introduction to SDL and Windows 73

//snip

//we want to use ObjectA as a member variable inside another object
//this means that you now have two copies of pObjA floating around.
ObjectB* pObjB = new ObjectB(pObjA);

//in the constructor of ObjectB
ObjectB::0bjectB(ObjectA* pObjA)
{
m_pObjA = pObjA;
m_pObjA->addRefCount() ;
}

//now in the destructor..do not delete m_pObjA, simply decrement the
//reference Count
ObjectB::~0ObjectB()
{
//do not delete the pointer to ObjectA, as this would then
//destroy ObjectA which we might not want to do. Just decrement
//the reference count
m_pObjB->dropRefCount();

INTRODUCTION TO DYNAMICALLY LINKED LIBRARIES

Dynamically Linked Libraries (DLLs) are an important and integral aspect of
Windows programming, which fits into the COM paradigm. A DLL contains either
a library of executable code or resource data that can be loaded and used by any
Windows application during execution of the program. Multiple applications can
reference a DLL.

The main benefit of using a DLL is that your project need not quit just because
an optional feature does not work. Your program can continue as necessary, but
simply not allow the user to perform the action requiring the missing DLL.

For example, in Microsoft Word you can edit files and then automatically mail
them across the Internet. The Internet module can be contained within a separate
DLL so that the main editor can still fully function even if the user has no Internet
connection detection.

When working with DLLs in your application, when you compile your pro-
gram, the machine will only record certain indexes into the DLL. The main work of

74

ON THE CD

Game Programming in C++: Start to Finish

making the DLL accessible to your program is through the loader mechanism in-
cluded with Windows. The DLL can be referenced in two ways: loadtime or runtime.

Loadtime linking occurs as you start up and launch your application. The DLL
loader will attempt to load the appropriate library referenced from the DLL and add
it to your application’s memory space.

Runtime linking, also known as delayed loading, is when the DLL loader will
only attempt to load the relevant libraries’ methods referenced from the DLL when
your application needs it.

The Peon engine that you are working with is using loadtime linking for getting
the library methods into your program’s memory space along with the OpenGL
libraries.

The real magic behind the DLL is contained within the /PeonMain/PeonDLL-
Header . h file found on the CD-ROM, which is contained in Listing 3.14.

LISTING 3.14 PeonDLLHeader.h

#ifdef PEONMAIN_EXPORTS

#define PEONMAIN_API _ declspec(dllexport)
#else

#define PEONMAIN_API _ declspec(dllimport)
#endif

This block of compiler preprocessor statements means that if you are building
the dynamic linked library itself, every object marked with the PEONMAIN_APT tag is
exported from the library. Otherwise, your game application using this library will
recognize these objects as being imported from a DLL. In practice, this means that
you only need to #define the PEONMAIN_EXPORTS statement when you are building
the Peon DLL. This is already done for you in the Peon project workspace.

CHAPTER EXERCISES

1. Play around with the IniConfigReader object in the loadEngine method.
Add some error checking to only allow “reasonable” window sizes such as
640 x 480, 800 x 600 and 1024 X 768.

2. By using the IniConfigReader object, you are helping to make the applica-
tion more data driven. In other words, some of the game parameters can be
modified by the player without needing to recompile the game’s source
code. Explain how this might be helpful for not only you (the program-
mer) but also the customer using your application.

Introduction to SDL and Windows 75

3. For further cross-platform functionality, recode the IniConfigReader ob-
ject into one that is capable of working with XML data.

4. Depending upon your logging preferences, add some methods to the
FileLogger object to record logging messages in HTML format. If you like,
have different colors for different severity levels of your logging mecha-
nism. For example, if a critical error is detected and the application needs
to exit, log this message using a red color.

SUMMARY

You have taken another step on the road of game programming. In this chapter, you
learned only what you need to really know about Windows programming in order
to make games using the SDL. You started off by learning how to start up, run, and
shut down the SDL. You also learned how to implement a basic log file writer object
for recording any helpful debugging information, as well as how to load configura-
tion information from the INI file. You finished this chapter by learning about the
design principles behind the Component Object Model and gaining an understand-
ing of the purpose of Dynamically Linked Libraries. In the next chapter, you begin
working on the game engine that fuels your SuperAsteroidArena project.

Introduction to the
Peon Engine

Chapter Goals

® Discuss the use and importance of an engine.

® Introduce the Peon engine and some of the objects that will
benefit game creation.

® Work on the first timebox of the game: foundation and state
management.

ably eager and excited to get more involved in game programming. In this

chapter, you will learn about some of the underlying mechanisms contained
within the Peon engine that you will be working with throughout the remainder of
this book.

3 fter learning some of the SDL basics in the previous chapter, you are prob-

BASIC ENGINE STRUCTURE

A game engine is the core software component of a computer game that typically
handles input, sound, networking, Al, and graphics. Although most game engines
today focus primarily on graphics techniques, they can also handle collision detec-
tion, game object scripting, and dozens of other features.

77

78

ON THE CD

Game Programming in C++: Start to Finish

In other words, not only is a game engine an entity designed to facilitate the
creation of games, it becomes the central heart of your game itself. Depending upon
the strength and design of your game engine, you should be able to use it in just
about any project. An analogy of this is a car’s engine. Although there are hundreds
of different car models, they all essentially have the same core components such as
an internal combustion engine, spark plugs, carburetor, and so on. The benefit of
this design is that you should have no trouble driving a Gremlin, and then winning
the lottery and stepping into a Porsche 911 Turbo.

Even though you might decide to extend or modify the engine depending upon
game requirements, you should still have a useful core system from which to draw.
Therein lies the fine line you will walk as a game engine designer: create a system
that is too complex and specific, and it loses the capability to be used in different
projects. But should you design a system that is too general or ambiguous, then you
might find that you have to assign extra man hours to bring the engine up to pro-
ject requirements.

Some of the large commercial game developers realize the power and cost ben-
efits behind a properly designed game engine. Although a few studios decide to
spend man hours on creating inhouse engines from scratch for their games,
the majority of teams these days simply purchase a license to an existing engine
of some kind to provide the functionality for their games’ requirements. The
Quake2/3, Unreal, and Torque engines are perfect examples of this. The flexibility of
their design and licensing model has allowed for not only the top studios to use
them in their titles, but fairly mid-range and independent companies to succeed as
well. Project managers are definitely seeing the cost benefits of spending the money
on a good engine. The more man hours spent on fixing up or maintaining an old
or broken engine takes away precious man hours assigned to designing or develop-
ing new game content. Even if you are a lone wolf or small game developer, you can
still reap the benefits of a game engine; instead of spending your precious time
maintaining a giant library of C/C++ code, you could be creating your next title.

Keep in mind that there are no perfect game engines; it is also crucial to be able to
evaluate the limitations of your engine before assigning it to a project. For exam-
ple, you might have a great 3D game engine that has components that are tested
and proven, yet the project requires completely different hardware and/or a differ-
ent style of scene management than what the engine was optimized for.

The inexperienced developer might try to force the engine to work for the pro-
ject, which is like a brute force approach to fitting a square peg into a round hole.

Introduction to the Peon Engine 79

The more seasoned veteran might decide that with the engine’s known limitations,
it would not be a recommended choice to use for the project. Naturally, this might
lead to the next step on deciding whether the project could be modified to work
with the engine or whether the game concept itself is a good idea.

) One has to find the right balance between tailoring the engine around the applica-
Ao tion and tailoring the application around the engine.

INTRODUCTION TO PEON

Throughout this book you will be adding pieces and components to Peon, which is
your game engine. You will also learn how to use it within the context of an actual
game. You learned about the design of the SuperAsteroidArena title back in the de-
sign chapter, so this is where you finally start adding some actual code to the game.
€ The source code to the engine is located on the included CD-ROM in /Peon, so
ovmee fee] free to open it and follow along at your leisure.
The Peon engine/framework is a collection of C/C++ objects that sits on a layer
above SDL and Windows. Rrefer to Figure 4.1 for the Peon architecture.

Your Game
y
Peon
! |
SBL OpenGL
. !
Windows

FIGURE 4.1 Péon architecture.

80 Game Programming in C++: Start to Finish

Although the framework is not intended to be the ultimate game engine solu-
tion, it does give you a starting point for learning about game creation along with
some concepts behind engine design.

The ultimate goal of the engine is to try and keep it as lightweight as possible in
order for it to be adaptable to your needs but still useful enough to allow for rapid
application development.

&9 This is not meant to be a book on engine programming, but one that focuses on
Mpec overall game programming.

INTRODUCTION TO SOME PEON COMPONENTS

Although the documentation provided with Peon will provide more insight to its
use, you wil learn some of the main components in this section as well as their im-
plementation throughout this book.

EngineCore: This is the core component of the engine that you were intro-
duced to in Chapter 3, “Introduction to SDL and Windows.” SDL is responsi-
ble for registering your application and creating the main window. An
additional responsibility is to launch the game into the main loop where it is
responsible for processing any events received in the application event queue.
It is also responsible for loading and creating the AudioEngine instance, the
InputEngine instance, and a SceneRenderer object capable of starting up and
shutting down an OpenGL context. Since you want only one instance of this
object within your program, by design you are implementing this object using
the Singleton design pattern.

AudioEngine: This core component is responsible for handling/ processing the
sound engine. It is an interface to the audio subsystem, which allows you to load
and play audio files using the SDL_Mixer library for any 2D sounds such as mid;
files. Some 3D positional sound effect playback is handled with OpenAL. Since
you want only one instance of this object involved with your application, it is
implemented as well within the context of the EnginecCore Singleton object. It is
covered in further detail for you in Chapter 11, “Working with Sound.”

Introduction to the Peon Engine 81

scriptengine: This is the small component of the engine which will be able to
handle and process scripts that you can read during the launch of a game using
the Lua script library (and virtual machine) of script processing. You will learn
more about scripting and this object in Chapter 19, “Introduction to Scripting.”

sceneRenderer: This is another core component of the Peon engine and is re-
sponsible for acting as the interface between your game and the underlying
OpenGL commands that are sent to your video hardware. It encapsulates the
necessary methods for creating, updating, and destroying an OpenGL surface,
and you will learn more about this object along with OpenGL in Chapter 6,
“Creating an OpenGL Renderer.”

sceneTexture: This is a small component designed to act as a container for
texture information used in your game. Accessible through the SceneRren-
derer, this object is responsible for loading and storing texture data that allows
for fast and easy access during the rendering process. You will learn more about
this object and texture manipulation in Chapter 6.

sceneFont: One of the primary channels of communication between your
game and the player is text to the screen, which updates the player on any
situation in the game world. It can display the current players involved in the
game along with any other information you need to display to the player. This
object is a component of some basic font handling and is discussed in further
detail in Chapter 6.

SceneGraphManager: As you learn in Chapter 8, “Scene Geometry Manage-
ment,” one of the fundamental objects or data structures within a useful 3D en-
gine is the concept of a scene graph. The scene graph represents every object
and/or rendering command within your game. It is a data structure used to in-
crease rendering performance, along with aiding in physics and collision de-
tection calculations.)

NetworkEngine: Part of the excitement in multiplayer gaming is actually play-
ing against other human opponents. The NetworkEngine subsystem will be re-
sponsible for handling and processing network events that are sent and received
to and from other players. Built upon the useful ReplicaNet networking library,
this component allows for fast and efficient message communication across the
network. You will learn more about networks and ReplicaNet in Chapter 14,
“Introduction to Networking,” and Chapter 15, “Networking Timebox.”

82

Game Programming in C++: Start to Finish

As you can see, the core component objects of the engine are mostly designed
to be accessed via the Enginecore Singleton object. Remember from Chapter 2,
“Design Fundamentals,” that the Singleton design pattern specifies that one
and only one instance of the object exists. Although perhaps not a perfect de-
sign, it does allow for a looser coupling between these core objects and any ap-
plication using Peon. The key to this approach is ease of use, and you will learn
more about the engine as you work through this book.

ParticleEmitter: The purpose of this object is to encapsulate and process a
collection of Particle objects for creating a fun and exciting special effect known
as a particle system. Particle systems can be smoke, fire, air, water, or a host of
other special effects.

Shockwave: One of the more interesting special effects for any explosion is the
use of the shockwave to depict a radii of energy emitting from a source vector.
As an internal timer progresses, the rings of the shockwave are recalculated to
appear as though they are growing.

BUILDING UPON THE FOUNDATION

When the underlying core objects are created and instantiated within your appli-
cation via the EngineCore object, the application kernel then puts itself into a
process phase, which is responsible for notifying your game of what is happening
both within the engine and within the game world itself.

Managing State Information

No matter how large or small your world is, there is always the need to track state
information within the game. A state can be defined as an updated snapshot of the
objects contained within your game world.

In other words, think of the responsibilities of a toggle light switch. The switch
can only be in one of two states: on or off.

During the updating phase of your game, the computer will make any neces-
sary calculations depending on the current state of the world. In most game pro-
jects this entails the use of a switch statement as demonstrated in Listing 4.1.

Introduction to the Peon Engine 83

LISTING 4.1 switch Statement for State Processing

switch(current_state)

{

case MAIN_MENU_STATE:

//do any main menu related tasks such as displaying the main
//menu,

//responding to input events generated by the mouse, respond
//to any button clicks, etc.

break;

case PLAYER_ACTIVE_STATE:

//do any related task for playing the main body of the game.
//Update the player's position in the world, let him shoot
//stuff, run around and basically try to save the planet
break;

case PLAYER_DEAD_STATE:

//do anything related to the player's death. Maybe display
//a dying animation or just a simple "game over" message
break;

//snip
g

Although this can be effective enough for a game with only a small quantity of
possible states, there can be many complications when adding new states to the
game. In most cases, these switch blocks also become rather large and increasingly
difficult to track or debug. :

Within the Peon engine, however, the IApplication and IApplicationState ob-
jects are used heavily to define and encapsulate different states that compose your
game. To add a new state to your game, you need to derive a new instance of the
IApplicationState object and provide definitions for a few overloaded methods.

Working on the First Timebox

It is time to work on the first timebox for the SuperAsteroidArena project. Check out
your SuperAsteroidArena design document from your CVS repository and take a look
at the first timebox defined: laying the foundation and basic state management.

You will first need to draft a list of requirements for this timebox. It does not
need to be anything complex and could appear as the following:

84

Game Programming in C++: Start to Finish

® Initialize and start up the application using Peon and SDL.
® Create some IApplicationState containers that you will fill in as development
progresses.

Based on your introduction to SDL in Chapter 3, “Introduction to SDL and
Windows,” the first requirement should already be in place. You have enough
background to load your application with an INT configuration file and present a
named main window using SDL.

You should now think of a list of possible states in which the SuperAsteroid-
Arena project can run. Because you are using a more iterative Agile design approach,
this list does not need to be written in stone and can be updated as you progress
through the project, depending upon any feedback from yourself or other testers.
You might decide the game needs more states, or you might think of a feature in the
game that you really want to support. Regardless, a first attempt at the list of states
the SuperAsteroidArena game can work through is listed here:

LogoState: This state is responsible for loading and presenting your own
company logo and perhaps to play a small musical introduction or jingle.

MainMenuState: This state is responsible for loading and presenting any re-
sources needed to have an operational main menu. Since it is the first “real”
screen of your game that the player confronts, you should try and create some
interesting background effects. You might also decide to simply have a running
demo of your game displaying in the background while you present the main
menu to the player in the foreground.

RunState: This state is used to contain the game logic, which is where the
game will spend the majority of its time. When you are playing the game, it is
in this state.

QuitGameState: The purpose of this state is to gracefully exit the application.
For most shareware games, you can use this state to present any further infor-
mation to the player including instructions on how to buy your game, where to
view further information, and so on.

When you finish with this current timebox, remember to evaluate what you are
working on.

Creating the New Instances of IApplicationState

Now that the basic graphics device is set up and created, you can begin this timebox by
creating some new instances of the IApplicationState interface as previously outlined.

As you will learn, when new instances of this object are created, they must be
added to the 1Application object, which functions as a state manager. The state

& _ —

Introduction to the Peon Engine 85

manager’s purpose is to contain the list of every 1ApplicationState instance in the
game. It is also responsible for switching between states and cleaning them up when
the application is terminated. Listing 4.2 details how to create a new instance of the
IApplicationState interface.

LISTING 4.2 LogoState Definition

/**
* This state is responsible for presenting the developer's Company
* Logo to the player. This can also be a simple animation accompanied
* by some music or even nothing at all.
)
class LogoState : public peon::IApplicationState
{
public:
/** Constructor */
LogoState();
/** Destructor */
~LogoState();
/** Overidden method to update this state
* @param elapsed_time — The time between clock ticks
*/
void onUpdateState(float elapsed_time);
/** Overidden method to render this state */
void onRenderState();
//snip!

s

Taking a view of the design document for SuperAsteroidArena again, you can
see that within this LogoState object you need to display your company logo and
play a small midi file. After roughly five to eight seconds, the game will switch itself
into the main menu state. In the future, you can replace the LogoState with an intro
movie, or perhaps some professionally recorded music. Because you have already
learned some of the tasks that need to be done with this state in previous chapters,
there is more benefit from taking a quick look at the code responsible for updating
the LogoState object. Listing 4.3 demonstrates this.

LISTING 4.3 LogoState::onUpdateState(float elapsed_time)

//snip!
static float current_time = 0.0f;
static bool. first_Pass = true;

86 Game Programming in C++: Start to Finish

if(first_pass)

{
//It's the first time through this update cycle in this state.
//Initialize or do any task that needs to happen once per
//state. For this state, simply begin to play the midi file.
first_pass = false;

current_time += elapsed_time;

if(current_Time > 5.0f)

{
//out of here.switch to our next state
EngineCore::getSingleton().getApplication().setState(
MAINMENU_STATE); \
}

//snip!

Implementing the other states should be just as straightforward during this

timebox. Please refer to the project’s sourcecode in the / SuperAsteroidArena direc-

< » toryonthe CD-ROM. You will be continuously adding to these IApplicationState
M instances throughout the rest of this book.

Timebox Evaluation

You are nearing completion of this phase of the design. Take a quick look at the
document with any notes you might have created for this timebox. Objectively an-
alyze whether you are satisfied with what you have produced thus far, even if you
feel that the implementation done in this timebox has not really accomplished
much.

If you would like to add or modify the states that the game can run in, then feel
free to inject them into the game along with updating the design document.

Also be sure to start familiarizing yourself with some of the Peon documenta-
tion. As you begin to add to the engine, you will become more familiar with its
workings and will be able to leverage it in any future application.

CHAPTER EXERCISES

1. Understand the process of adding new state objects into the game world.
With your own experience, decide whether this is a better solution than
simply processing every state in one block of code using a switch statement.

Introduction to the Peon Engine 87

2. Take a look at the definitions of some of the other game state objects de-
rived from the IApplicationstate interface. Feel free to either introduce or
subtract methods from the IApplicationState interface that do not help
your own design or can possibly do more.

SUMMARY

Throughout this chapter, you discovered the importance of an engine or frame-
work that you can use as a backbone for your game objects. By creating a small layer
above the SDL library, you can create some useful middleware that is flexible
enough to handle just about any game application you want to make with it. You
also were introduced to the Peon engine design basics, which can help do some of
the necessary management work for you, as you get on with the content creation of
your game.

There is a lot more to learn, but you are making good progress. Now you move
on to learning some of the important fundamental mathematics behind most
games today. If you already possess a strong background in mathematics, you can
probably skip the next chapter. Otherwise, those who require a math refresher
should flip through the following chapter.

; Graphics Programming
Mathematics

Chapter Goals

® Discuss the coordinate system used by OpenGL.

Discuss the Fixed Function Geometry Pipeline.

Introduce and discuss vectors.

Introduce and discuss matrices.

Describe the three coordinate transformations possible: scaling,
translation, and rotation.

Introduce and understand how to manipulate the camera.
Introduce a discussion on Quaternions.

cover some basic 3D concepts. Most game programmers tend to shy away

from the mathematics involved in 3D graphics programming in general, but
the majority of the concepts and operations you need to perform are fairly simple
to understand despite the hundred years of mathematics behind them.

Before you can dive head-first into some API-specific code, you first need to

THE CARTESIAN COORDINATE SYSTEM

No matter which graphics API you use, the objects you will need to manipulate in
the scene must have some kind of orientation and position representation. To keep
things simple for graphics programmers, you will make heavy use of the Cartesian
Coordinate System.

90 Game Programming in C++: Start to Finish

The Cartesian Coordinate System segments space into three seperate axes: the
horizontal (x), the vertical (y), and the depth axis (z). The origin (or center) of the
world lies at coordinates (x,,2):(0, 0, 0).

The left-handed coordinate system, which is what Direct3D uses by default, is
one in which the positive z-axis points into your screen. Conversely, the right-
handed coordinate system, used by OpenGL, is one in which the positive z-axis
points out of the display. This is demonstrated in Figure 5.1.

Left-handed Right-handed
Cartesian Coordinates Cartesian Coordinates

Y | Y

A 4

FIGURE 5.1 The left- and right-handed coordinate systems.

For the Peon toolkit, you will stick to a right-handed coordinate system for object
positioning which coincides with the one used by OpenGL.

NOTE

FIXED FUNCTION GEOMETRY PIPELINE

It is not magic that allows you to position and orientate your world objects, but
something called a coordinate transformation. Every object within the game world

Graphics Programming Mathematics 91

is represented on an atomic level by a vertex containing the x,y,z coordinates. The
vertex must pass through three types of transformations before you see the final
product on the screen. On a higher level, these transformations on the vertex take
place in the Fixed Function Geometry Pipeline (FFP) shown in Figure 5.2.

Transformation Pipeline

World
! Transformation |

Rasterizer

FIGURE 5.2 Fixed Function Geometry Pipeline.

World Transformation: Usually the vertex (or vertices for an object) is de-
fined with a local coordinate system. For example, when you open your favorite
modeling tool to create an object, you are manipulating this object within its
own local coordinate system. The world transformation stage is where the ver-
tices are converted into the coordinate system of the game world.

View Transformation: When planning each scene, you also need to position
your viewpoint (the camera position). After the viewpoint is established, the
view transformation stage is where every world vertex is oriented with respect
to the camera.

Projection Transformation: Now that the world’s vertices are organized with
respect to the camera viewpoint, you need to scale the vertices to create a feel-
ing of depth between the camera and every object in the scene. At this stage of
the graphics pipeline, you have the choice of two projections:

Perspective Projection: Vertices that are positioned close to the camera ap-
pear larger than those vertices that are positioned farther away. This is the

92 Game Programming in C++: Start to Finish

view projection used by any First Person Shooter game or something in
which a feeling of movement through an interactive world is needed.
Orthographic Projection: This type of projection (an affine projection) is
where the feeling of depth is totally removed. Uses of this projection type
are most common in things like CAD tools or for displaying a menu system
to the player.

Clipping and Viewport Stage: The final stage of the pipeline finishes off by
deciding which vertices are actually visible and which are positioned beyond
the confines of your viewing area (the view frustum). Vertices that are marked
as unviewable are culled from the scene.

INTRODUCTION TO VECTORS

A mathematical entity that describes a direction and magnitude such as a force like
acceleration or gravity is known as a vector. Vectors are also used to represent a po-
sition in a 3D coordinate system. The Peon library has an optimized vector object
for you to use called vectors. Vectors are an important component to graphics pro-
gramming. For a quick snapshot of the class definition, please browse through the
Vector3.h file included with the Peon project shown in Listing 5.1.

LISTING 5.1 Vector3 Definition

class PEONMAIN_API Vector3

{
public:

float x;
float y;
float z;

Vector3(void)
{

0.0f;
0.0F;
0.0f;

N < X
0]

}

static Vector3 crossProduct(const Vector3 &v1, const Vector3 &v2);
static float dotProduct(const Vector3 &v1, const Vector3 &v2);
static float distance(const Vector3 &v1, const Vector3 &v2);

Graphics Programming Mathematics 93

Common Vector Operations

For 3D graphics programming, proper vector manipulation is a crucial aspect with
many applications in a Cartesian Coordinate system. To begin with, there will be
cases in which you will need to calculate the length of the vector (the magnitude).
The magnitude of a vector is represented mathematically by a vertical bar on either
side of the vector as shown in Equation 5.1.

|A|= JAx* + 4 + A2 (5.1)

When you begin manipulating vectors in 3D graphics, it is important that every
vector has been reduced to a length of 1.0. This is known as normalization, and its
usage will become more apparent further on. To normalize the vector, you simply
divide the vector a by its own magnitude (see Equation 5.2).

e
| A|

a= (5.2)

In many situations in graphics programming you will need to find a perpen-
dicular vector (the normal vector), given only two other vectors that lie on the same
plane. This is known as the cross product of two vectors, and is very useful in light-
ing, physics, and collision detection calculations, among other things. See Equation
L%

N= AxB=(AB ~AB,AB ~AB,AB ~AB) (5.3)

Listing 5.2 demonstrates how to perform a cross-product calculation within the
Vector3 object.

LISTING 5.2 Vector3::crossProduct

Vector3 Vector3::crossProduct(const Vector3 &vi, const Vector3 &v2)

{

vector3 vCrossProduct;

vCrossProduct.x
vCrossProduct.y
vCrossProduct.z

vi.y * v2.z - vi.z * v2.y;
vi.z * v2.x - vi.x * v2.2;
vi.X * v2.y - vi.y * v2.Xx;

return vCrossProduct;

94

Game Programming in C++: Start to Finish

Another important operation involved in graphics programming is the dot
product. There are two possible equations that define the dot product. Equation 5.4
outlines the official algebraic definition of the dot product, which is the sum of the
products of each corresponding component to produce a scalar.

AeB=AB +AB +AB, (5.4)

The other use for the dot product is to calculate the angle between two vectors
as defined in Equation 5.5. It becomes the product of the magnitude of the vectors
and the cosine of the angle between them.

Ao B=|A||B]cosO (5.5)

In terms of practical code, Listing 5.3 demonstrates how this is done within the
Vector3 object.

LISTING 5.3 Vector3::dotProduct

float Vector3::dotProduct(const Vector3 &v1, const Vector3 &v2)
{

return(vi.x * v2.x + vi.y * v2.y + vi.z * v2.z);

}

You will learn more about using the dot product later on, but its primary pur-
pose with respect to graphics programming is to determine the perpendicular vec-
tor (known as the “normal vector”) from two other vectors.

Another useful method that you can add to your vector3 object is how to find
the distance between two vectors (see Listing 5.4).

LISTING 5.4 Vector3::distance

float Vector3::distance(const Vector3 &v1, const Vector3 &v2)

{
float dx = vi.x - v2.x;
float dy = vi.y - v2.y;
float dz = vi.z - v2.z;

return (float)sqrt(dx * dx + dy * dy + dz * dz);
}

As you use more of the vectora object in the Peon engine and throughout the
rest of this book, you will become more accustomed to how the object works and
what it is doing.

Graphics Programming Mathematics 95

INTRODUCTION TO MATRICES

Both the OpenGL and Direct3D API are optimized to use matrices to position the
object/point/vertex within the gameworld. A matrix is a two-dimensional array of
numbers with a set number of rows and columns. You normally define the dimen-
sion of a matrix by the mxn notation. For example, if you had a matrix with one
row and three columns, you would say that you had a 1 X 3 matrix.

All graphics hardware is optimized for using 4 x 4 matrices.

NOTE

THE OPENGL MATRIX STACKS

One of the key design principles behind OpenGL is the proper manipulation of the
three matrix stacks available to us: the modelview, projection, and texture matrix
stacks.

The modelview matrix stack can hold up to 32 4 x 4 matrices, with the pipeline
using the top matrix on the stack. As with any other stack, you can push and pop
various matrices, in order to create complex geometry out of simple, atomic coor-
dinate transformations. Transformations of your modelview matrices are respon-
sible for placing and orientating your objects within the gameworld.

The projection matrix stack can hold two 4 x 4 matrices, with the pipeline using
the topmost matrix on the stack to perform any projection transformations to the
objects in the pipeline. Transformations of the projection matrix are responsible for
defining the viewing volume and clipping planes of your scene.

The texture matrix stack can hold two 4 X 4 matrices as well and is responsible
for the manipulation of texture coordinates before any texture mapping occurs.

In each case, the OpenGL context uses the glPushMatrix and glPopMatrix func-
tions for pushing and popping matrices onto any of the matrix stacks, which can be
a useful practice to preserve the contents of the matrix stack. This will become
clearer in the examples.

The Peon engine contains a matrix object that can be used for some calcula-
tions. See Listing 5.5 for an outline to the Matrix44 object.

LISTING 5.5 Matrix44 Definition

class PEONMAIN_API Matrix44

{
public:

96 Game Programming in C++: Start to Finish

float m[16];
Matrix44() { identity(); }

Matrix44(float mO, float m4, float m8, float mi2,
float mi1, float m5, float m9, float mi3,
float m2, float m6, float mi10, float mi4,
float m3, float m7, float mi1, float mi5)i

void identity(void);

void scale(const Vector3 &scale);

Matrix44 operator + (const Matrix44 &matB);
}s

Identity Matrix

A useful matrix within graphics programming is the basic identity matrix. Simply
put, the values along the main diagonal are 1, while every other value is 0. Identity
matrices can be any dimension, but both row and column sizes must be equivalent
(see Equation 5.6). For example, an mxn where m = n.

S O O -
S O =~ O
o G e B < =
Lt = N <= =

(5.6)

Listing 5.6 demonstrates how the Matrixaa object is initialized as an identity
matrix.

LISTING 5.6 Matrix44::identity

void matrix44::identity(void)

{
m[0]=1.0f; m[4]=0.0f; m[8] =0.0f; m[12]=0.0f;
m[1]=0.0f; m[5]=1.0f; m[9] =0.0f; m[13]=0.0f;
m[2]=0.0f; m[6]=0.0f; m[10]=1.0f; m[14]=0.0f;
m[3]=0.0f; m[7]=0.0f; m[11]=0.0f; m[15]=1.0f;

}

Matrix Addition and Subtraction

Graphics Programming Mathematics 97

To perform matrix addition and subtraction, you simply take each element of one
matrix and add or subtract it with the same positioned element in the next matrix.

See Equations 5.7 and 5.8.

DA N~

5512
Matrix A = 2.9
P 5
3 2
Matrix A + B=

N W 0 =

5+5
5+6
243
37

Matrix B =

245
6+5
5+6
2+6

1+5
7+6
4+5
245

N WV &N W

55 5
5 6 5

5.7
6 5 4 el
6 5 4
1+5
8+5

5.8
5+4 (5:8)
2+4

Each matrix involved in addition or subtraction must be the same dimension.
While both addition and subtraction operations are associative, only matrix addi-

tion is commutative.

For example, M+ (N-0O)=(M+N)-Obut M-N!=N-M.
Listing 5.7 shows you how the + operator is overloaded within the Matrix44

object.

LISTING 5.7 matrix44::operator + (const matrix44& operand)

matrix44 matrix44::operator + (const matrix44 &matB)

{

matrix44 result;

result.m[0]
result.m[1]
result.m[2]
result.m[3]

result.m[4]
result.m[5]
result.m[6]
result.m[7]

m[o]
m{1]
m[2]
m[3]

m[4]
m[5]
m(6]
m{7]

+ + 4+ +

+ 4+ + +

matB.
matB.
matB.
matB.

‘matB.

matB.
matB.
matB.

m[0];
m{1];
m[2];
m[3];

m{4];
m[5];
m[6];
m77;

Game Programming in C++: Start to Finish

result.m[8] = m[8] + matB.m[8];
result.m[9] = m[9] + matB.m[9];
result.m[10] = m[10] + matB.m[10];
result.m[11] = m[11] + matB.m[11];

result.m[12] = m[12] + matB.m[12];
result.m[13] = m[13] + matB.m[13];
result.m[14] = m[14] + matB.m[14];
result.m[15] = m[15] + matB.m[15];

return result;

Matrix Multiplication

NOTE

Although easy to do, matrix multiplication can get confusing if you are not used to it.
If your memory is foggy on matrix multiplication, feel free to refer back to this area
as often as you want. The only rule about multiplication is that the inner product of
the two matrices must be identical. For example, A,; X Bs; is a legal multiplication, as
the number of columns of matrix A is identical to the number of rows of matrix B,
whereas A;, X B, is not a legal multiplication, as the inner product (the number of
columns of matrix A and the number of rows in matrix B) is not identical.

After you have determined that the multiplication can proceed, the dimension
of the resulting matrix is the outer product of the two matrices. For example, since
A3 X Bss is a legal multiplication, the resultant matrix is C,5. See Equations 5.9 and
5.10.

. 12 ; 5+6
Matrix A = Matrix B = (5.9)
3 4 7 8
) 1-5+2-7 1-6+2-8
Matrix AB = (5.10)
3-54+4-7 3-6+4-8

Remember that you multiply each element of row A by each element of column B.
Also, never forget the basic order of operations, meaning you calculate the multi-
plication operands before the addition.

Graphics Programming Mathematics 99

Coordinate Transformations

Because you can combine transformations by the help of matrix multiplication,
you just need to remember that matrices within graphics programming are of a
4 X 4 dimension. Only three transformations are involved in graphics program-
ming: scaling, translation, and rotation.

Scaling Transform

This is the act of applying a scalar value to each element in the matrix. This trans-
formation can be useful if you want to grow or shrink your vertices. In 3D graph-
ics, because you normally use the coordinates x,y,z to define a vertex, the scaling
factors appear as sx, sy, sz. See Equation 5.11.

S 0 0 O
0
. ¢ (5.11)
0 0 S 0
6 0 0 i

Because you are working with homogenized matrices, the last entry on the main
diagonal (Sy,) is always 1. As you will learn later, this makes it easier to combine
several matrices into one final product.

Listing 5.8 demonstrates how to create a scaling matrix with the Matrix44 ob-
ject from the Peon library.

LISTING 5.8 Matrix44::scale(const Vector3 &scale)

void matrix44::scale(const Vector3 &scale)

{
m[0] = scale.x;
m[5] = scale.y;
m[10] = scale.z;
}

Translation Transform

Translation can be thought of as moving a point from one position in space to an-
other. To perform translation, you simply add the delta values of each axis to the
original values of the point being translated. See Equation 5.12.

100 Game Programming in C++: Start to Finish

120050, 0
, T L MO (5.12)
B Bl
Tx Ty Tz 1

Note that in graphics programming, the point P is always represented in ho-
mogenous coordinates. For example, P(x, , z, 1). This is important, as it allows you
to use matrix multiplication to combine several transformation matrices into one
final product. If you did not have the point in homogenous coordinates, then many
of your transform matrices would violate basic matrix operation rules.

A sample translation matrix can be created by the following Peon code pre-
sented in listing 5.9.

LISTING 5.9 Matrix44 Translation Example

void Matrix44::translate(const Vector3 &trans)

1
m[12] = trans.x;
m[13] = trans.y;
m[14] = trans.z;
}

Rotation Transform

The final transformation type is the most complex transformation among the big
three. You can scale a point to any size and can now move this point anywhere in
3D space, so the final operation that you are allowed to perform is to rotate around
a given axis.

The following rotation matrix transforms the point (x, y, z) around the x-axis
to form the new point (x’, y’, z’). See Equation 5.13.

0 0

0

cos@ sin@ 0

R.= (5.13)
0
1

—sin@ cos@

S O O -

0 0

Listing 5.10 details this rotation in the Matrix44 object.

Graphics Programming Mathematics

LISTING 5.10 void Matrix44::rotate_x(const float &angle)

void Matrix44::rotate_x(const float &angle)

{

}

//the given angle is in degrees. You need to convert

//it to
float s
float ¢

m[5]
m[6]
m[9] =
m[10]

radians.
= sin(PEON_DEGTORAD(angle));
cos (PEON_DEGTORAD (angle)) ;

C;
S5
-s;
C;

The following rotation matrix transforms the point (x,y,z) around the y-axis to
form the new point (x’, y’, 2’). See Equation 5.14.

cos@ 0 —sin@ 0
0 1 0 0
Ry =
sin@ 0 cos@ O
0 0 0 1

(5.14)

Listing 5.11 details the rotation around the y-axis using the Matrix44 object.

LISTING 5.11

void Matrix44::rotate_y(const Real &angle)

void Matrix44::rotate_y(const float &angle)

{

}

float

float ¢

m[0]
m[2]

m[8] =

m[10]

w

sin(PEON_DEGTORAD(angle));
cos (PEON_DEGTORAD (angle));

The last rotation matrix transforms a point (x,y,z) around the z-axis to form
the new point (x’, y’, z’). See Equation 5.15.

102 Game Programming in C++: Start to Finish

cos@ sin@ 0 O

s —sin@ cos@ 0 O (5.15)
0 0 1 0
0 05500 =1

Note that in these three rotation matrices, the greek letter Theta represents the
angle of rotation that you want to perform in radians.
wore
In the Peon engine, the matrix rotation around the z-axis is detailed in Listing
5.12.

LISTING 5.12 void Matrix44::rotate_z(const float &angle)

void Matrix44::rotate_z(const float &angle)
{
float s
float ¢

sin(PEON_DEGTORAD(angle));
cos (PEON_DEGTORAD (angle));

m[0]
m{1]
m[4]
m[5]

]

Cs
S5
-s;
C;

Matrix Concatenation

It is very important that the matrices involved in your calculations are in the 4 x 4
dimension (homogenous coordinates), as you can then take several transform ma-
trices and combine them into one matrix, which represents the final transform that
you can apply to a vertex in the scene. This can improve some efficiency in any per-
formance critical code, as you can combine several matrix operations into one. This
is a process called matrix concatenation, which is defined as shown in Equation 5.16.

C=M,-M,-M_-M (5.16)

In this formula, C represents the final matrix product of the concatenation of
the M, to M, matrices.

Graphics Programming Mathematics 103

Remember again that matrix multiplications are not commutative, so care is
needed to ensure that the proper order is followed. A rule of thumb that is common
in graphics programming practice is to work from the left to the right (also called
the left-to-right rule). The visible effects of the final composite matrix C occur in a
left-to-right order.

After all of this introduction to matrices, you should be aware of a little secret: the
Peon library does the math for you internally. It still is useful to understand how
matrices work, as there are times when performance critical matrix optimizations
are needed.

For another quick example on working with the OpenGL matrix stack to
demonstrate how to calculate the resultant matrix after a series of operations, as-
sume that you have an object positioned at the world origin (0.0f, 0.0f, 0.0f). You
want to double the size of the object, rotate it around the x-axis by 30 degrees, and
then translate the object to position 10 units in the positive y-axis and 10 units into
the screen on the z-axis (0.0f, 10.0f, —10.0f). Take a look at listing 5.13 to see how
you would compute the final matrix with OpenGL.

LISTING 5.13 A Real-World Example

glPushMatrix(); //push the current matrix onto the stack

glLoadIdentity(); //load an identity matrix

glScalef(2.0f, 2.0f, 2.0f); //scale the object by 2.0f in each axis

glRotatef(30.0f, 1.0f, 0.0f, 0.0f); //apply a rotation around the
X-axis

//by 30 degrees

glTranslatef(0.0f, 10.0f, -10.0f); //translate 10 units into the
screen ‘

//render the object

renderTARDIS() ;

glPopMatrix(); //restore the matrix from the stack

BASIC CAMERA/VIEW ORIENTATION

When learning about Fixed Function Pipeline, you learned the concept of the view
transformation, which orients each point with respect to the scene camera.

A view transformation matrix contains three vectors: the eye vector, the lookat
vector, and the up vector.

104 Game Programming in C++: Start to Finish

Eyevector: This is the vector representing the x,y,z position of your eye in the
scene.

Lookat vector: This is the vector representing the x,y,z position of the point
in space at which you are looking. .

Up vector: This is the vector representing the x,y,z “Up” direction. In most
cases, this vector should be always set to (0.0, 1.0, 0.0). The positive y-axis rep-
resents the upward direction.

Listing 5.14 provides more details.

LISTING 5.14 Creating a View Transformation Matrix with gluLookAt

Vector3 vecEye(Q.O, PEOL 1.0 3 //our viewpoint
Vector3 vecLookAt(0.0, 0.0, -10.0); //what we are looking at
Vector3 vecUp(0.0, 1.0, 0.0); //the "up" direction

gluLookAt(vecEye.x, vecEye.y, vecEye.z,
vecLookAt.x, vecLookAt.y, vecLookAt.z,
vecUp.x, vecUp.y, vecUp.z);

Projection Transformations

One of the last stages of the Fixed Function Pipeline is the Projection Transforma-
tion stage. Remember from the previous section that you have the ability to set the
pipeline into two projections: perspective or orthographic.

Perspective

The perspective projection is the one most commonly used for games today, as it
provides the depth within the scene, to provide a feeling of reality. But do not as-
sume that only First Person Shooters or Real-Time Strategy games can be made
with the perspective projection. Even platformer type titles can be done with a per-
spective viewpoint. Listing 5.15 documents this process using OpenGL.

LISTING 5.15 Perspective Transformation Matrix with OpenGL

//calculate the aspect ratio

float fAspect = (Glfloat)width / (Glfloat) height;
//switch matrix mode to work with the projection stack
glMatrixMode(GL_PROJECTION);

glLoadIdentity();

Graphics Programming Mathematics 105

//calculate a new perspective matrix using the aspect
//ratio and the near and far clipping planes
gluPerspective(45.0f, fAspect, 1.0f, 100.0f);
//switch back to the modelview matrix stack
glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

Orthographic :

The orthographic projection is also very useful, as it allows you to enable the
pipeline to remove all feeling of depth from the rendered scene. This can be useful
for certain effects you might want to create or for use for the entire game like a plat-
former or other 2D type title. One other popular use of the orthographic projection
is for displaying the GUI, which is one way for the player to interact with the game.
Listing 5.16 shows how this is done with OpenGL.

LISTING 5.16 Creating an Orthographic Projection with OpenGL

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

//Calculate an orthographic matrix using the width and height
//of the window

gluOrtho2D(O, (Glfloat)width, 0, (Glfloat)height)5
glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

Create a Basic Camera

With this introduction to the world of basic view manipulation, you have learned
enough to create your own camera object. Within the Peon library, your default
viewpoint manipulator is interfaced through the SceneCamera object which is de-
fined in Listing 5.17.

LISTING 5.17 /PeonMain/SceneCamera.h

namespace peon
{
/**
* This object is our basic camera object for the Peon
* library. It is only meant to have basic functionality.
b7}

106 Game Programming in C++: Start to Finish

class PEONMAIN_API SceneCamera
{
public:
SceneCamera() ;
~SceneCamera();
/**
* This method just sets our camera/view into a perspective
projection
*/
void setPerspectiveProj(float fAspect, float z_min,
float z_max);
/**
* This method is responsible for setting the position of the
viewer
*
void setViewMatrix(Vector3& vecEye, Vector3& vecLookAt,
Vector3& vecUp);

b
}

As you can see, you are only creating some wrapper utility methods around the
projection fundamentals. For nearly every 3D scene in your game, you will need to de-
fine your view matrix as a perspective projection. Then you only need to adjust your
view transformation matrix of the pipeline with the help of the setviewMatrix method.

Gimbal Lock

Currently, you can store the set of rotation angles which specify the x, y and z rota-
tions around the axii in a Vector3 data structure. For example, Vector3(90.0f, 0.0f,
0.0f) is used for a rotation of +90 degress in the x-axis. In mathematics, this is
known as an Euler angle. In other words, Eular angles can be represented with a
single vector data structure such as a Vector3 object. Gimbal lock is a problem as-
sociated with Eular angles when you attempt to concatenate multiple transforms
into the final product matrix. It is possible for the rotation around one axis to be
mapped onto a rotation around another axis, therefore potentially making it im-

possible to actually rotate around the desired axis.

For example, your object wishes to rotate around the z, y and x axis to produce
the final orientation. The rotation around the z axis will run smoothly, along with
the rotation around the y axis. However, after this second rotation, your x axis is
now mapped onto your z axis. Therefore, any rotation in the x axis will instead
rotate the object around the z axis. Worse yet, it is now impossible to rotate your

object around the desired x axis!

Graphics Programming Mathematics 107

This problem can be solved by using quaternions.

Quatefnions

Mostly used for either interpolating between two vectors, or manipulating your
scene camera, quaternions are a useful mathematical tool to provide a mechanism
to rotate any object by any angle around any arbitrary axis. The final rotation is still
calculated using matrix operations; however, instead of multiplying the rotation
matrices together, quaternions representing the axes of the rotation are multiplied
together. This final quaternion product is then converted to the proper rotation
matrix.

Within the Peon library, the quaternion object handles these operations and is
defined in the header file uaternion.h defined in Listing 5.19.

LISTING 5.19 /PeonMain/Quaternion

class Quaternion

{
public:
float m_w, m_x, m_y, m_zZ;
public:
Quaternion();
~Quaternion(;;
//snip
b

A quaternion is defined as a four-tuple entity composed of normal and imagi-
nary numbers. There are two equations that can define a quaternion, shown in
Equations 5.17 and 5.18.

g=w+xi+ yj+zk wherei,jand k are imaginary numbers (8.17)

q= [w,v] where w represents a scalar value and v represents a vector (5.18)

Determining the magnitude of a quaternion is similar to what you have already
learned about vectors. You only need to extend the equation to handle the extra
component. See Equation 5.19.

magnitude = \/;2 +x+yt+2 (5.19)

To normalize a quaternion, you apply the same operations that you did for the
vector. Namely, you would divide each component by the magnitude of the whole
quaternion.

108 Game Programming in C++: Start to Finish

By far the most important operation when using quaternions is multiplication.
As you will see, the product of two quaternions does actually help you better posi-
tion the camera within the game world.

Letting QI and Q2 be their own respective quaternion, then their multiplica-
tion would be similar to Equation 5.20.

@ *Q,), = (w,w, = X%, =), ~ %%,) (5.20)

Similar to matrix multiplication, the product of Q1*Q2 is not equal to Q2*Ql. In
other words, quaternion multiplication is not commutative.
wore
A quaternion not only stores an axis but also a specific amount of rotation
around the axis. Once you calculate the final rotation transformation matrices con-
taining quaternions, it is a trivial matter to orient your camera or any other object
within the game world to prevent gimbal lock.

Basic Quaternion Algorithm

The basic algorithm to using quaternions for your rotational matrices is straight-
forward:

1. Use a quaternion to represent your rotation.

2. Generate a temporary quaternion which is the change from the current
orientation to the new orientation.

3. Multiply the temporary quaternion created in Step 2 with the original
quaternion from Step 1.

4. Convert this product quaternion to a matrix, which will act as the rota-
tional matrix for positioning your vertices in the scene.

When you have finished multiplying the two quaternions together, the final ro-
tation transformation matrix is calculated from the product quaternion. See Equa-

tion 5.21.

w?+x - y* — 2 2xy— 2wz 2xz + 2wy

0
2xy+ 2wz w'—x*+y’ -2 2yz — 2wz 0
2xz— 2wy 2yz—2wz w =x'=y'+2* 0

1

0 0 0

Graphics Programming Mathematics 109

CHAPTER EXERCISES

1. After browsing through both the vectors and Matrix44 objects in the Peon
library, feel free to optimize them in any way possible. Hint: Research the
inline keyword.

2. Although you learned about gimbal lock and its effect on your objects’
final orientation, research some possible solutions for this problem, in-
cluding how to modify your SceneCamera object to use quaternions.

3. You should always maintain your camera position code applied to the
GL_PROJECTION matrix stack. To understand why, manipulate the camera
while in the 6L_MODELVIEW matrix stack and test the results for yourself.

SUMMARY

Now that you have learned the fixed function geometry system of graphics pro-
gramming theory, it is much easier to picture and understand just how a point (or
vertex) moves through the pipeline and is displayed in the 3D world. You have also
Jearned how to manipulate the key stages of this pipeline to help produce the results
needed via various matrix operations. You were introduced to vector and matrix
concepts that attempt to make your 3D programming life a little bit easier. By ma-
nipulation of the camera’s eye and looking at vector components, you can also
view the scene from any point in space.

You were also introduced to quaternions, which enable you to calculate object
rotations in your game world, without the worry of gimbal lock. Now that you have
a mathematics foundation to build upon within graphics programming, in the next
chapter you learn about OpenGL, which is a very popular graphics application in-
terface (or API). ‘

Creating an OpenGL
Renderer

Chapter Goals

Provide an overview of OpenGL.

Introduce the basics of creating and using an OpenGL context.
Introduce the OpenGL internal state machine.

Introduce rendering primitives and basic texture mapping.
Provide information on how to use display lists and rendering text.
Introduce how to add fog effects to your scene.

corporated during the late 1980s and quickly became a leading 3D graphics

APL It was designed from the beginning to be cross-platform, simple to use,
and fast. It was first released and optimized for the high-end workstations, but has
gradually migrated to the consumer level thanks to a shared interest among leading
graphics developers and video hardware vendors. The OpenGL language specifica-
tion is not under control by one party but is a collaborative piece of work with con-
tributions by some major hardware manufacturers and other industry leaders.
Together, they form the OpenGL Architecture Review Board (ARB), and as of this
book’s writing, have just released the OpenGL 2.0 specification.

The Open Graphics Library (OpenGL) was architected by Silicon Graphics In-

112 Game Programming in C++: Start to Finish

Within this chapter, you will start adding and working with components from
the Peon engine in order to gain an understanding of the specifics behind manip-
ulating the OpenGL pipeline.

HOW DOES OPENGL OPERATE?

To the uninitiated graphics programmer, it is important to understand what OpenGL
is and what it can do for you. OpenGL is a highly procedural graphics API. In other
words, rather than relying on the programmer to describe how a scene is structured,
you are required to physically define the rendering steps necessary to create the ob-
jects and environment for your scene. These rendering steps or methods involve ma-
nipulating the API, which includes a few hundred functions. These functions control
your graphics device to draw triangles, points, lines, and other complex data in three
dimensions. OpenGL also has the capability to add lighting to your scene; use textures
for adding more realism; and use blending, shading, animation, and a host of other
effects.

OpenGL does not provide any functions for window management on your
platform of choice. It also does not provide any custom method for manipulating
input or audio devices. It focuses solely on providing a strong graphics architecture.
The strength of this approach is that it gives you the freedom to use nearly any pro-
gramming language or favorite library to manipulate how OpenGL functions with
your existing projects.

OPENGL AND INSTALLABLE CLIENT DRIVERS (ICDS)

Starting with the release of Windows 95 SR2, the only implementation of OpenGL
provided by Microsoft to Windows developers was through a software-only module
using the OpenGL 1.1 specification, which is contained in the openg132.d11 located
in your system directory. Because Microsoft began to focus their 3D efforts on the
production and promotion of Direct3D, the OpenGL ARB was forced to decide
how to enable future OpenGL support on the Windows platform. With a little help
from Microsoft, the ARB designed an architecture known as the Installable Client
Driver (ICD). The ICD would be provided by the video hardware vendors and acted
as a proxy between the OpenGL commands in your program and the OpenGL run-
time provided by Microsoft. Figure 6.1 provides an overview of this architecture.

Creating an OpenGL Renderer 113

Application

Y Y

OpenGL32.dll GDI32.dll

Y

OpenGL ICD

Y \ \

Video Display Driver Interface

FIGURE 6.1 OpenGL ICD architecture.

UNDERSTANDING THE OPENGL ARCHITECTURE

Since you learned about the Fixed Function Pipeline in Chapter 5, “Graphics Pro-
gramming Mathematics,” you should not have too much trouble understanding
the basic OpenGL rendering pipeline shown in Figure 6.2 as a higher level overview.

There are two paths through the pipeline depending on whether the input is an
image (that is, pixel data) or vertices representing your game world meshes or ob-
jects. The data passes through the pipeline, and the final product is rendered (ras-
terized) onto the video hardware. Although you cannot modify the final surface
that is displayed on the video hardware, also known as the frame buffer, you do have
the ability to manipulate several other buffers, which are combined to compose the
final output.

114 Game Programming in C++: Start to Finish

Per-ve_rtex
operations

| Evaluators L and primitive

assembly —1

Display Rasterization _| Per-fragment

list ‘l operations
Pixel Texture Framebuffer

3 ;7| operations f<--- | assembly
Pixel :
(oL 1c: I/ A

FIGURE 6.2 OpenGL rendering pipeline.

DEFINING THE SCENERENDERER

As you learned in Chapter 4, “Introduction to the Peon Engine,” the Peon en-
gine works by providing a SceneRenderer interface that you will use to setup the
necessary OpenGL architecture to render your scene data.

P Listing 6.1 provides a shortened outline of the class found in the /Peon/Peon-
ovmeco - Main/include folder on the CD-ROM.

LISTING 6.1 SceneRenderer Interface

namespace peon

{
/** This object is used to process our rendering commands by acting
* as a layer or interface above the underlying OpenGL architecture
5/
class SceneRenderer : public IUnknown

{

protected:

/** width of the context */
int m_iDeviceWidth;

/** height of the context */
int m_iDeviceHeight;

Creating an OpenGL Renderer 115

/** depth of the context. Usually either 16 or 32 */
int m_iBitsPerPixel;

/** are we windowed or fullscreen? */

bool m_bWindowed;

/** SDL_Surface to contain the OpenGL commands */
SDL_Surface* m_pOGLSurface;

//snip
public:

/** Constructor */
SceneRenderer();

/** Destructor */
~SceneRenderer();

/11

/** This method is used to load our OpenGL context using params
* from the INI file. */

bool loadDevice(IniConfigReader*);

/** This method is used to unload and destroy our OpenGL
* context */
void unloadDevice();

/** This method is used to clear our back surface in
* preparation of our next frame of rendering commands */
bool clearDevice();

/** This method is used to flip our surface chain. The back
* surface becomes the front, and the front becomes the back */
void flipDevice();
//snip
3

116 Game Programming in C++: Start to Finish

LOADING THE OPENGL DEVICE USING SDL

It is within the Scenerenderer: *loadDevice method where you get to the nuts and
bolts of creating a new SDL_Surface object with OpenGL capabilities. Listing 6.2 de-
tails how this is accomplished. :

LISTING 6.2 Creating an OpenGL Surface

bool SceneRenderer::loadDevice(IniConfigReader* pConfig)

{
Uint32 iFlags;
iFlags = SDL_OPENGL ; /1 we want an openGL window
iFlags |= SDL_HWPALETTE;// access the hardware colour palette
iFlags |= SDL_RESIZABLE;// the window should be resizeable

//use the IniConfigReader object to snag the desired width

//of the context

m_iDeviceWidth = (int)pConfig->getInt("Application",
"WindowWidth" 640);

//grab the height
m_iDeviceHeight = (int)pConfig->getInt("Application",
"WindowHeight" 480) ;

//grab the bit depth 16 or 32
m_iBitsPerPixel = (int)pConfig->getInt("Application",
"WindowDepth", 16);

/1do we want a windowed or fullscreen application
m_bWindowed = pConfig->getBool(“Application", "Windowed",
"TRUE") ;

//to play nice, you should query SDL for video hardware info
const SDL_VideoInfo * pVideoInfo = SDL_GetVideoInfo();
if(NULL == pVideoInfo)
{
//failed to grab information
return false;

}

Creating an OpenGL Renderer 117

//test if a hardware surface is available
if (pvideoInfo->hw_available)

iFlags |= SDL_HWSURFACE;
else

iFlags |= SDL_SWSURFACE;

//test if hardware blitting is available
if (pvideoInfo->blit_hw)
iFlags |= SDL_HWACCEL;

//to create a fullscreen application, you just need to append
//the proper SDL flag to our list of properties you specify
//when creating the surface.
/1l
//For debugging, you typically leave it a windowed app in
//order to read any output or trace through the execution
//stack in your debugger. Fullscreen mode is usually reserved
//for the final release of your game.
if (!m_bWindowed)
{

iFlags |= SDL_FULLSCREEN;
}

/| enable double buffering
SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);

/| set the precision of the depth buffer — usually 16 or 32 bits
SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, m_iBitsPerPixel);

/| disable the stencil buffer
SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 0):;

//no accumulation buffer, so disable the accumulation bits
SDL_GL_SetAttribute(SDL_GL_ACCUM_RED_SIZE, 0);
SDL_GL_SetAttribute(SDL_GL_ACCUM_GREEN_SIZE, 0);
SDL_GL_SetAttribute(SDL_GL_ACCUM_BLUE_SIZE, 0)5
SDL_GL_SetAttribute(SDL_GL_ACCUM_ALPHA_SIZE, 0);

//we have finished with our parameters: CREATE THE DEVICE!
//m_pOGLSurface is an SDL_Surface which acts as a container

//of sorts for the surface area/buffer that's displayed

//to the main video display. (Because we're using a cross-platform

NOTE

Game Programming in C++: Start to Finish

//library, the SDL_Surface is a very generic data structure).
m_pOGLSurface = SDL_SetVideoMode (m_iDeviceWidth,
m_iDeviceHeight, m_iBitsPerPixel, iFlags);

//if our surface is null then we've got a problem.
//quit now
if(NULL == m_pOGLDevice) return false;

return true;

}

The code shown in Listing 6.1 is responsible for initializing and configuring the
OpenGL context with the help of the SDL toolkit. You first begin by specifying what
type of pixelformat you want the OpenGL rendering context to have. A pixelformat
is a way to contain and define the properties of the desired OpenGL context. In
Listing 6.2, for example, you are defining a pixelformat to be an OpenGL context
created in the video hardware, double-buffered with a depth buffer precision of 16
bits. The final call to SDL_SetvideoMode then attempts to create the OpenGL context
given these desired window and pixelformat parameters.

As outlined in the comments of Listing 6.2, you can specify whether or not you
want your game running in windowed or full-screen mode. When you are work-
ing with an alpha or beta version of your game, it is usually better to keep your ap-
plication in windowed mode. Depending upon the type of game, you would then
specify a full-screen mode when releasing the game to the public. On some of the
older video hardware, you also might notice an increase in performance when
putting your application in full-screen mode.

WORKING WITH OPENGL SURFACES

After the OpenGL context is created with double buffering enabled, you have two
available surfaces of video memory within the graphics hardware with which to
work. These two surfaces are known as the front buffer (or primary surface) and back
buffer (or secondary surface). Managing these two buffers effectively is what creates
the illusion of animation and high-speed polygons within your game.

Each surface can be thought of as an array containing color pixels that you dis-
play on the monitor. The resolution of the surface defines the precision of these
color pixels, so the lower the resolution, the less memory the surface will require
within the video hardware.

slata Tna e 2o SR AR AN RO e

Creating an OpenGL Renderer 119

For example, a common resolution is 800 x 600 x 32, meaning that the surface
is 800 pixels wide, 600 pixels high, and using 32-bit color. With 32-bit color, you
need 4 bytes per pixel (1 each for red, blue, and green and 1 for the alpha channel).
By doing some simple math, you get 800 X 600 X 4 bytes or 1,920,000 bytes (roughly
1.9 MB) of memory allocated for this surface, which is then doubled since you are
working with two of them.

CATHODE RAY TUBE MONITORS AND PHOSPHORS

The display surface of a regular CRT monitor is covered by three kinds of phos-
phors that display a different color, depending upon the monitor’s electron gun. A
red phosphor emits red light, a green phosphor emits green light, and a blue phos-
phor emits blue light. This is depicted in Figure 6.3.

Electron
Guns

Magnified
Phosphor-Dot
Triangle

Screen

FIGURE 6.3 CRT phosphor depiction.

120 Game Programming in C++: Start to Finish

When the video hardware is presenting an image to the front buffer, the elec-
tron gun starts with the upper-left corner of the display. As the electron gun moves
from left to right, top to bottom, the video hardware signals the gun how long to
keep it on each of the red, green, and blue phosphors before moving to the next
pixel. An RGB value of (0,0,0) signals the electron gun to skip over the current pixel
since we want the color black. An RGB value of (255,0,0), however, signals the
electron gun to remain on the red phosphor as long as possible, but to skip over the
green and blue phosphors.

When the electron gun finishes moving pixel by pixel through your display to
the bottom-right corner, it moves back to the upper-left corner of your display to
start the whole process over again.

This time period when the gun is moving from the bottom-right back to the upper-

left corner of the display is known as the vertical retrace period.

worE

The measure of how many times per second the gun is able to update the screen
is known as the refresh rate and measured in Hertz (Hz). Usually, the video hard-
ware operates within the range of 60 to 85 Hz.

Because the front buffer is the one always presented to the monitor, OpenGL
will not allow you to manipulate it directly. Otherwise, there would be an annoy-
ing flickering on the monitor since the electron gun is refreshing the current image
as it is being displayed. To overcome this flickering, you instead operate on the back
buffer surface memory. The back buffer can be thought of as the next frame of the
scene. When you have finished creating the scene on the back buffer, the surfaces
are then flipped so that the back buffer becomes the new frame to be drawn by the
electron gun, while the front buffer becomes the new back buffer in which you then
proceed to draw the next frame of action.

This is also known as double buffering and has been a common practice for smooth
graphics animation for a long time.
woTE
Usually, the optimal time to flip the video surfaces is during the vertical retrace
period of the monitor; otherwise, you can get tearing, which occurs when the top
portion of the display is the old front buffer, whereas the bottom portion being
drawn is using the new video buffer.

Clearing the Device

Since you are working with a double-buffered mechanism to generate the illusion
of smooth animation within the game world, you need to clear the back buffer sur-

Creating an OpenGL Renderer 121

face to push the primitive data that composes the next frame. Listing 6.3 demon-
strates how to clear the back buffer, taken from the SceneRenderer.h header file.

LISTING 6.3 SceneRenderer::clearDevice()

bool SceneRenderer::clearDevice()

{
//clear the depth and color buffers

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
//reset the current modelview matrix to the identity matrix
glLoadIdentity();

return true;

Flipping the Device

After you finish sending your vertices to the graphics pipeline, you need to signal
the hardware to flip the context surfaces—sending the back buffer to the display,
while the front buffer becomes your new working surface. Listing 6.4 shows how
this is done in the SceneRenderer object.

LISTING 6.4 SceneRenderer::flipDevice()

void SceneRenderer::flipDevice()

{
glFlush(); //flush any commands leftover in the OpenGL pipeline
SDL_GL_SwapBuffers(); //swap our buffers

}

That is all that is needed to create and use an OpenGL context for rendering
any desired vertex information.

Unloading the Device

When you are finished with your OpenGL device, you should clean up any mem-
ory that you allocated during the lifetime of the object. In the case of the SceneRen-
derer object, only the memory allocated by the spL_surface object, which
encapsulates the OpenGL context, needs to be freed. Listing 6.5 demonstrates this.

122 Game Programming in C++: Start to Finish

LISTING 6.5 SceneRenderer::unloadDevice

void SceneRenderer::unloadDevice()

{
//SDL will free the allocated memory for us.

//Just use the method!
SDL_FreeSurface(m_pOGLSurface)i

}

That is all you need to worry about. SDL will take care of the rest for you by
managing the proper destruction and cleanup of this surface.

THE OPENGL STATE MACHINE

OpenGL is known as an immediate mode API. This means that the current state of
the rendering flags within the OpenGL pipeline immediately affect the outcome of
your vertex data to the rasterizer. You can control and manipulate these rendering
flags (or states) to enable or disable any feature of the pipeline. The two main inter-
faces that OpenGL provides for state manipulation are the g1Enable and glDisable
commands. They can be used in conjunction with the g1Isenabled and glIsDisabled
functions to query the current state of any rendering flag as shown in Listing 6.6.

LISTING 6.6 glEnable/glDisable

glEnable(GL_LIGHTING); //enable the lighting engine
glDisable(GL_BLEND); //disable blending

GLboolean current_state;
current_state = glIsEnabled(GL_DEPTH_TEST);
//is our depth testing enabled?

Saving and Restoring State Information

You are familiar with the projection and modelview matrix stacks that OpenGL
maintains, but there also exists a state stack that is available for the current render-
ing state of the pipeline. This stack gives you precise control over what you save

Creating an OpenGL Renderer 123

(that is, push) and what you restore from the stack (that is, pop). The glPushAttrib
and glPopAttrib methods are available for this purpose of saving or restoring exact
state information such as the current color or point size, and so on. Listing 6.7
demonstrates how they can be used.

LISTING 6.7 glPushAttrib / glPopAttrib

//push our current color onto the stack — pretend it's red
glPushAttrib(GL_CURRENT_BIT);

//set our color to white
glColoraf(1.0f, 1.0f, 1.0f, 1.0f);

//render some primitives
render_primitives();

//restore the saved color state which restores the red color
glPopAttrib();

RENDERING PRIMITIVES

The SceneRenderer implementation has been created and is now ready to use. In
order to make any object in your game world render to the OpenGL context, you
must describe their appearance with the help of primitives. These primitives are like
the building blocks of the objects in your game world, not unlike forming a DNA
sequence to create or clone genetic material. OpenGL allows you to use several dif-
ferent kinds of primitives, which are shown in Table 6.1.

TABLE 6.1 Common OpenGL Primitive Types

Primitive Type Description

GL_POINTS Single vertices.

GL_LINES Vertices are grouped into pairs to render unconnected

lines. '

GL_TRIANGLES Vertices are grouped into threes to form unconnected
» ‘ triangles.

GL_TRIANGLE_STRIP Similar to GL_TRIANGLES, only they are connected.

GL_QUADS Vertices are grouped into fours to form unconnected

quadrilaterals.

.

124 Game Programming in C++: Start to Finish

For an overview on how these primitives are grouped together, please refer to

Figure 6.4.
ov4
V0@ ® v3
vie @2
GL_POINTS

vi

% VO . v3
- TR ve Vo 7
v2
‘ﬁ‘_>< Vg v3
v6 v5 vi v2

v4 vi
GL_LINES GL_LINES_STRIP GL_LINES_LOOP
5 5 v7
junt
Vo s v4 v6
GL_QUADS GL_QUAD_STRIP
v4 vi
v2
v3
VO
v3 e vd
GL_TRIANGES GL_TRIANGE_STRIP GL_TRIANGE_FAN

FIGURE 6.4 OpenGL primitives.

To signal OpenGL that you are sending vertices into the graphics pipeline for
processing, you must surround any group of vertex definitions with a pair of g18e-
gin and glend commands. This prepares the hardware to accept vertex data into the
graphics pipeline. Listing 6.8 contains a snippet of OpenGL code demonstrating
how to render a basic square.

Creating an OpenGL Renderer 125

LISTING 6.8 Basic Square

//snip
glClear(GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT);
glLoadIdentity();

//signal to the OpenGL pipeline that you want to start
//rendering individual triangles. Each three vertex
//definitions are grouped into a single triangle,
//therefore you need to specify 6 vertices for one square
glBegin(GL_TRIANGLES);
glvertex3f(-1.0f, -1.0f, -10.0f); //bottom-left vertex
glvertex3f(-1.0f, 1.0f, -10.0f); //top-left vertex
glvertex3f(1.0f, -1.0f, -10.0f); //bottom-right vertex

glvertex3f(1.0f, -1.0f, -10.0f); / /bottom-right vertex

glvertex3f(-1.0f, 1.0f, -10.0f); //top-left vertex

glvertex3f(1.0f, 1.0f, -10.0f); //top-right vertex
glEnd();

//finished passing all primitive data to the pipeline
//signal opengl/SDL to flip the buffers for us.
glFlush();

SDL_GL_SwapBuffers();

Rendering Vertices with the SceneRenderer

Now that you can render a basic triangle or two with OpenGL, some more func-
tionality needs to be added to the SceneRenderer interface in order to do this within
the Peon game engine.

No matter which API you will use to render your primitives, you will still need
to define how a primitive is composed and what type of vertex information you
want to feed your pipeline. For the triangle data with which you will be working,
you only need to create one vertex type (for now): the DiffusePrim. This will sim-
ply encapsulate the vertex information that every object using the Peon library
needs. Listing 6.9 gives a better picture of the DiffusePrim definition.

126 Game Programming in C++: Start to Finish

LISTING 6.9 DiffusePrim

namespace peon

{
struct PEONMAIN_API DiffusePrim

{
Tloat X, ¥y 257 /%;¥,2Z position of the vector

float r, g, b, a; //diffuse color components (to be discussed)
};

At the moment, the only attribute that looks recognizable right now is the x,y,z
position of your vertex. The rest will become clearer throughout the rest of this
chapter. Listing 6.10 details the new method addition to the SceneRenderer object.

LISTING 6.10 Addition to SceneRenderer.h

//snip

/1this method is used to pass a group of DiffusePrim
//triangles to the pipeline

void drawPrim(DiffusePrim* pvertices, int count);

The final step in implementing this function is to implement the method in the
SceneRenderer. cpp file. Listing 6.11 details how this method operates.

LISTING 6.11 drawPrim Implementation

void SceneRenderer::drawPrim(DiffusePrim* pvertices, int count)

{

//push the current modelview matrix onto the matrix stack
glPushMatrix();

//push the current color information onto the attribute stack
glPushAttrib(GL_CURRENT_BIT);
glLoadIdentity();

//start pushing triangles through the pipeline
g1Begin(GL_TRIANGLES);

Creating an OpenGL Renderer

for(int i = 0; i < count; i++)
{
|/ /specify the diffuse color component of the vertex
glColor4f(pVertices[i].r, pVertices[i].g,
pvertices[i].b, pVertices[i].a);

//specify the position component of the vertex

glvertex3f(pVertices[i].X, pvertices[i].y, pVertices[i].

//finished
glEnd();

127

//restore the color attribute and the original modelview matrix

glPopAttrib();
glPopMatrix();

}

In the /chapter_06/BasicPrims project, there is a method of demonstrating how
to pass an array of DiffusePrim objects to the SceneRenderer. Listing 6.12 details

how this is done.

LISTING 6.12 MainState.cpp

//define a simple square here using the peon::DiffusePrim type

DiffusePrim m_oTriPrims[6];

//snip

//Put this vertex left 1 unit and down the y-axis 1 unit then move

//into the screen by 10 units
m_oTriPrims[0].x = -1.0f;
m_oTriPrims[0].y = -1.0f;
m_oTriPrims[0].z -10.0f;

//move this vertex up the y-axis by 1 unit, then move into the

. screen
//by 10 units :
m_oTriPrims[1].x = -1.0f;
m_oTriPrims[1].y = 1.0f;
m_oTriPrims[1].z = -10.0f;

128 Game Programming in C++: Start to Finish

//put this vertex one unit to the right, one unit down and 10 units
in

m_oTriPrims[2].x = 1.0f;

m_oTriPrims[2].y = -1.0f;

m_oTriPrims[2].z =10.0f;

//snip — the other 3 vertices are defined similarly

//Grab the renderer from the EngineCore singleton and pass

//the triangle data to it

SceneRenderer* pRenderer =
EngineCore::getSingleton().getRenderer();

pRenderer->drawPrim(m_oTriPrims, 6)

You will then see in the main window a white triangle on a blue background as
shown in Figure 6.5.

W BasicPrims

FIGURE 6.5 BasicPrims output.

Creating an OpenGL Renderer 129

TEXTURE MAPPING

Giving the scene a real polished look and feel comes from the use of highly detailed
textures. The process of texture mapping involves taking an image and attaching it
to a polygon or other vertices within the graphics pipeline.

This process can really elevate the quality of the objects within a scene, as well
as to help improve the ever important frame rate, since in some cases you might
have the option to replace a highly detailed 3D model with that of a texture mapped
quadrilateral.

A texture map is broken into a 2D rectangular array of cells, known as texels.
These texels can then be applied to any object within the game world, rectangular
or not.

Although you can use one- or three-dimensional textures for your mapping
process, this book focuses only on using two-dimensional textures having just a

- width and height.

Creating an OpenGL Texture

Before you can use a texture map within the graphics pipeline, you must first
load it into OpenGL. OpenGL does have a small image loading library available
called glaux, but you can take advantage of a helpful SDL library, sbL_Image. It sup-
ports a wider variety of image formats than the glaux and minimizes most of your
image manipulation needs.

The first step in the process of creating an OpenGL texture is to first load the
texture data from the image file. Within the Peon project, this is accomplished by
using your SceneRenderer object to load and instantiate the SceneTexture object,
which is a handle to the texture information. You can see how this is done in List-
ing 6.13, which is taken from the SceneTexture object in the Peon engine.

LISTING 6.13 SceneTexture::loadImage()

bool SceneTexture::loadImage(const String& strFilename, bool
bAlpha,
bool bMipMaps, bool bRepeat)
{
//load the image data to an SDL_Surface structure
SDL_Surface* pTexSurface = IMG_Load(strFilename.c_str());
if(NULL == pTexSurface)

130 Game Programming in C++: Start to Finish

//error
return false;

}

After this is done, you need to allocate and create an array large enough to hold
the texture data. You then will loop through the loaded texture information and
copy it over to the new array, as shown in Listing 6.14.

LISTING 6.14 Creating the Image Data Array

//calculate the total size of the image data. If you are needing
//the alpha channel then account for that

int dim = pTexSurface->w * pTexSurface->h * ((bAlpha) ? 4: 3);
GLubyte *pData = new GLubyte[dim];

//1loop through our SDL_Surface and copy it into the array
//if the image has an extra alpha channel of information then
//be sure to append that

int pos = 0;
for(int y = (pTexSurface->h — 1); y > -1; y-)
{

for(int x = 0; x < pTexSurface->w; x++)

{

uint8 r, g, b, a;

//getPixel is defined in the SDL documentation. It just
//grabs the pixel data from a given SDL_Surface at
//coordinates x,y

Uint32 color = getPixel(pTexSurface, x, Vi

/INext, just pull the r,g,b diffuse color component
//values from the pixel we just pulled from the SDL_Surface
if(!bAlpha)

SDL_GetRGB(color, pTexSurface->format, &r, &g, &b);
else

SDL_GetRGBA(color, pTexSurface->format, &r, &g, &b, &a);

pData[pos] = r; pos++;
pData[pos] = g; pos++;
pData[pos] = b; pos++;
if(bAlpha)

{

Creating an OpenGL Renderer 131

//if we need the alpha channel information then copy it over
pData[pos] = a; pos++;
i
}
}
}

After you have finished this step, you now have the image data copied into the
allocated array in memory. Also take note that you will need to allocate extra bytes
should the image contain an alpha channel. The alpha channel stores extra informa-
tion for the texture, which is most commonly used to calculate transparency or
blending effects. More use of the alpha channel is described later in this chapter.

Now it is timie to create a texture handle within OpenGL. This is necessary, as
OpenGL will then be able to optimize where this texture data will reside in mem-
ory. The glGenTextures function is used to create a new texture handle. You are
then going to be working with this texture handle within the OpenGL pipeline, so
you must use the glBindTexture to bind (or glue) the desired texture handle to the
current working texture stack within OpenGL as shown in Listing 6.15.

LISTING 6.15 Generating and Loading an OpenGL Texture Handle with g1TexImage2D

//m_tex is a GLuint value which acts as a handle and contains an
//automatically generated value from OpenGL

//if the alpha channel information is needed, set as GL_RGBA,
otherwise

//use GL_RGB

int type = (bAlpha) ? GL_RGBA : GL_RGB;

glGenTextures(1, &m_tex); /] Generate texture ID

glBindTexture (GL_TEXTURE_2D, m_tex);

Now that the texture handle has been created within OpenGL memory, you
can decide whether you want to have OpenGL automatically generate mipmapped
textures for you of the same image. Mipmapping is a process by which textures are
generated based upon the distance of the viewer to the texture. Having mipmapped
textures can increase the visual effect of a texture, which is meant to preserve the
resolution of the image no matter how far or close the camera is to the textured ob-
ject. For example, in any virtual world or FPS, the player tends to move through
levels and will hide behind objects if they are being attacked. Without mipmapping,
a simple wall texture that appears as some regular bricks will appear normal from
a distance. As the player moves closer, however, the brick texture will appear dis-
torted and pixilated. Mipmapping preserves the original texture image by making

132 Game Programming in C++: Start to Finish

the brick appear the same no matter how close or far away the camera is. Listing
6.16 proceeds to generate mipmaps of the texture if you so desire.

LISTING 6.16 Enabling Mipmapping

int filter_min, filter_mag;

filter_min = (bMipMaps) ? GL_NEAREST_MIPMAP_NEAREST : GL_NEAREST;
filter_mag = GL_NEAREST;

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
filter_min);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
filter_mag);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
(bRepeat) ? GL_REPEAT : GL_CLAMP);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
(bRepeat) ? GL_REPEAT : GL_CLAMP);

if (bMipMaps)
{
gluBuild2DMipmaps (GL_TEXTURE_2D, type, pTexSurface->w,
pTexSurface->h, type, GL_UNSIGNED BYTE, pData);
}else
{
glTexImage2D(GL_TEXTURE_2D, 0, type, pTexSurface->w,
pTexSurface->h, 0, type, GL_UNSIGNED BYTE, pData);

//now that we are finished, do some garbage collection
//clean up our array and destroy the surface you loaded
delete [] pData;

SDL_FreeSurface(pTexSurface);

//return the texture handle
return true;

Creating an OpenGL Renderer 133

Using the Texture Map

Now that your texture information is loaded into the OpenGL context, you can
then apply it to any primitive data you want to pass through the pipeline. To let the
pipeline know which texel to apply to which primitive, you need to understand
basic texture coordinates.

2D texture coordinates are usually defined as (s,t) or (u,v) pairs, and range
from 0.0f to 1.0f inclusive. The upper-left corner of the texture map is referenced
as (0.0f, 1.0f), and the lower-right corner is referenced as (1.0f, 0.0f).

Before OpenGL can apply the texture data to any vertices, the individual tex-
ture coordinates must be defined using the g1TexCoord2f function within the g1Be-
gin/glEnd block. Listing 6.17 takes the simple square you created earlier and applies
the necessary texture map information.

LISTING 6.17 A Simple Textured Square

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glloadIdentity();

//signal to the hardware you want to start rendering

//triangles

//The texture data has been loaded into the triangle_texture variable
glBindTexture(GL_TEXTURE_2D, triangle_texture);

glBegin(GL_TRIANGLES);

//first triangle vertices

glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -10.0f);
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -10.0f);

glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, -10.0f);

//second triangle vertices

glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, -10.0f);

glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -10.0f);

glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -10.0f);
glEnd();

glFlush();
SDL_GL_SwapBuffers();

Using the SceneTexture

When everything is compiled within the project, a demonstration of how to use the
<. SceneTexture interface can help you understand how everything will fit together. In
owmeco the /chapter_source/chapter_06/BasicTexture project on the CD-ROM, you can

134 Game Programming in C++: Start to Finish

see how the texture data is loaded and displayed onto the square you created in the
BasicPrims project. Listing 6.18 details the pertinent function methods for texture
manipulation.

LISTING 6.18 BasicTexture

SceneTexture* pTex = NULL;

//1load our texture accepting our default texture parameters
pTex = pRenderer->loadImage("data\\textures\\sdl_logo.bmp");

//now set it before rendering the square.
glBindTexture (GL_TEXTURE_2D, pTex->getTex());

pRenderer->drawPrim(m_oVerts, 6);

When the project is compiled and run, you should see a window come up with
the SDL logo being displayed on the square as shown in Figure 6.6.

™ Basic Texture

FIGURE 6.6 BasicTexture output.

Creating an OpenGL Renderer 135

With the power of encapsulation, you have now made working with texture
data a simple task for your project. Well done!

RENDERING TEXT

A critical component of any game is to provide effective feedback to the player for
him to understand what is expected during the game—not to mention the player’s
general progress or status. From displaying the player’s current score, to providing
instructions to the player on what he must do next, rendering text is a critical com-
ponent of games. For handling text on your OpenGL context, you have two real op-
tions: system fonts or texture bitmapped fonts.

Although SDL has some external libraries to help with creating True Type font
strings, most game programmers use texture bitmapped fonts to render their text
to the player. It can give the game a more professional feel, and there is no reliance
on any specific underlying system fonts on the machine. The only magic behind
using texture mapped fonts is that the font texture must contain the alphabet in
ASCII order, which is then cached into a display list.

OPENGL DISPLAY LISTS

o

-

ON THE CD

OpenGL can use several methods and algorithms to cache rendering instructions in
order to improve the performance of the data in your scene. Using display lists al-
lows the OpenGL context to store commands in an optimal memory location most
often directly within the video memory itself. When you signal the context to
process the display list, OpenGL will then execute the entries in the same order they
were stored. ‘

The general procedure for using display lists is to first have OpenGL generate a
display list handle using glGenLists (). You then will compile a new list of com-
mands that you want to have cached within the display list using glNewList (). To
signal the context that you want to use the display list, you will need to work with
the glcallList () function. Finally, the glpeleteLists() function is used to free this
stored memory. Listing 6.19 outlines a small sample of using display lists, which is
taken from the /chapter_06/BasicDisplayList sample on the CD-ROM.

LISTING 6.19 Small Display List Sample

//similar to texture handle creation, create a display list handle
GLuint tri_display_list = glGenLists(1);

136 Game Programming in C++: Start to Finish

//compile a basic triangle within this new list
glNewList(tri_display_list, GL_COMPILE);

glBegin(GL_TRIANGLES);
glVertex3f(-1.0f, 0.0f, -10.0f);
glVertex3f(0.0f, 1.0f, -10.0f);
glVertex3f(1.0f, 0.0f, -10.0);

g1End();

//you are finished with the display list. Close it off
glEndList();

//snip

//now let's render it.

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();

glCallList(tri_display_list);

glFlush();
SDL_GL_SwapBuffers();

//snip
//now let's free the memory allocated to the display list
glDeletelLists(tri_display_list, 1);

Storing the Font Characters

The first step in rendering some bitmapped font text is to first create and load a dis-

play list that contains the texture coordinates of each character of the font. Listing

6.20 documents a way to take the number of rows and columns of your font texture

and loop through each character storing the texture coordinates to use later. This
. is taken from the SceneFont object in the /Peon/PeonMain/include folder on the
owmeco CD-ROM.

LISTING 6.20 Storing Texture Coordinates of Each Character

bool SceneFont::loadFont(int char_width, int char_height,
int char_spacing)

int loop;

Creating an OpenGL Renderer

float cx;

// Holds Our X Character Coord

floatcy;

// Holds Our Y Character Coord

float CWX ;

// CharWidth in texture units

float cwy;

m_char_width = char_width;
m_char_height = char_height;
m_char_spacing = char_spacing;

cWX
cwy

(1.0f / 256.0f) * m_char_width;
(1.0f / 256.0f) * m_char_height;

I

//Calculate the number of display lists we need
//by taking the product of the rows and columns
m_display_list = glGenLists(m_fxCount * m_fyCount);

for (loop=0; loop<(m_fxCount * m_fyCount); loopt+)

{

/| X position of current character
cX float (loop%sm_fxCount) * cwx;
// Y position of current character
cy = float(loop/m_fyCount) * cwy;

// Signal a new list
glNewList(m_display_list + loop,GL_COMPILE);

/] Use A Quad For Each character in the ASCII table
glBegin (GL_QUADS) ;

glTexCoord2f (cx,1-cy-cwy); glvertex2i(0,m_char_height);

glTexCoord2f (cx+cwx,1-cy-cwy);
glVertex2i(m_char_width, m_char_height);

glTexCoord2f (cx+cwx,1-cy); glVertex2i(m_char_width, 0);

glTexCoord2f (cx,1-cy); glVertex2i(0, 0);

glEnd();

137

138 Game Programming in C++: Start to Finish

//move to the right to work with the next character
glTranslated(m_char_spacing,0,0);

//the list is finished. Close it off

glEndList();

}
//finished. Return no problems.

return true;

}

When that is finished, this font display list is then used whenever you want to
render any text. An example of using the SceneFont object to render some text is de-
tailed in Listing 6.21.

LISTING 6.21 SceneFont: :drawText()

void SceneFont::drawText(float xpos, float ypos, const String&
strText)
{
//snip!
//put the matrix mode to the modelview
glMatrixMode (GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
//translate to the coordinates passed into this function
glTranslatef (xpos,ypos,0.0f);
glColor4f(1.0f, 1.0f, 1.0f,1.0f);

//set the list base to the beginning of our ASCII alphabet
glListBase(m_display_list - 32);

//call each display list associated with the appropriate
//letter in the ASCII table
glCallLists((int)strText.length(), GL_BYTE, strText.c_str());

//snip!

The SceneFont in Action

Now that you have created and implemented a way to present text data to the
OpenGL context, you can run through a sample demonstrating how to use it. The
BasicFont project demonstrates one way of using the SceneFont object. In the

Creating an OpenGL Renderer 139

~ <. /chapter_06/BasicFont/Main.cpp implementation file on the CD-ROM, Listing
owmee 6,22 demonstrates how to load a new SceneFont.

LISTING 6.22 Loading a New SceneFont

//m_pFontTexture is defined as a SceneTexture object
m_pFontTexture = EngineCore::getSingleton().getRenderer()
->loadTexture("data\\textures\\font.png");

//the characters in the font texture are 16 pixels wide,

//16 pixels high and 14 pixels apart from each other

m_pFont = EngineCore::getSingleton().getRenderer()
->loadFont (16, 16, 14);

Printing Text

Now that the SceneFont is loaded into the program, you can use it to display any
text you want. For this sample, you are simply displaying the words “Hello World”
in the upper-left corner of the context, which is detailed in Listing 6.23.

Within the SceneFont object you are switching into an orthographic projection to
position and render your text without any appearance of depth. As such, the coor-
dinates 0,0 represent the top left corner of your context.

LISTING 6.23 Printing Text

//snip

//grab a handle to the current SceneRenderer

SceneRenderer* pRenderer =
EngineCore::getSingleton().getRenderer();

//set the texture for the font image
pRenderer->setTexture(m_pFontTexture);

//print "Hello World" to coordinates 10,10 from the upper-left corner
m_pFont->drawText(10, 10, "Hello World");

Cleaning Up

There is not much more involved in displaying characters from a given font
bitmap. Now you need to properly clean up the allocated memory used during your
sample; Listing 6.24 details how to dispose of the used resources.

140 Game Programming in C++: Start to Finish

LISTING 6.24 Garbage Disposal

//unload the font object in memory
EngineCore::getSingleton().getRenderer()->
unloadFont(m_pFont);

/lunload the font texture data in memory
EngineCore::getSingleton().getRenderer()->
unloadTexture(m_pFontTexture);

After you launch the /chapter_source/bin/BasicFont.exe binary, you will see a
window displayed with your text as shown in Figure 6.7.

Basickont R ot

Hello Worild

FIGURE 6.7 BasicFont output.

Although displaying information to the player is of a critical importance, you
can see how easy it is to make this happen with OpenGL. Feel free to experiment
with different font bitmaps of different sizes to get used to using the SceneFont
object.

RENDERING A SIMPLE CUBE

You have learned enough information on rendering OpenGL primitives to tackle
something more interesting than a square or rectangle. A basic geometric object

Creating an OpenGL Renderer 141

that beginner graphics programmers often render is a cube. Cubes are an excellent
way to learn how vertices interact with each other, along with learning how to
properly position the object and apply texture coordinate information. Working
from the /chapter_06/BasicCube project, you can create a display list to store your
geometric vertices. Listing 6.25 demonstrates how this is done.

LISTING 6.25 Creating a Display List for the Cube

//m_uTriDisplaylList is defined as a GLuint variable type
//Generate a display list handle with OpenGL
m_uTriDisplaylList = glGenLists(1);

//open the new list for vertex compilation
glNewList(m_uTriDisplayList, GL_COMPILE);

//Until now you've been working with the GL_TRIANGLES primitive
//which is more than capable of handling a cube. For brevity
//purposes in this listing, using the GL_QUAD type is an option
glBegin(GL_QUADS) ;

//the front

glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, 0% - 1.01)5
glTexCoord2f(1.0f, 0.0f); glvertex3f(1.0f, -1.0f, 1.0f);
glTexCoord2f(1.0f, 1.0f); glvertex3f(1.0f, 1.0f, 1.0f);
glTexCoord2f(0.0f, 1.0f); glvertex3f(-1.0f, 1085~ 1.0%)5

/ /the back

glTexCoord2f(1.0f, 0.0f); glvertex3f(-1.0f, -1.0f, -1.0f);
glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0F; =1.0f);
glTexCoord2f (0.0f, 1.0f); glvertex3f(1.0f, 1.0f, -1.0f);
glTexCoord2f(0.0f, 0.0f); glvertex3f(1.0f, -1.0f, -1.0f);
//the top

glTexCoord2f(0.0f, 1.0f); glVertexsf(-1.0f, 1.0F, =1.0%);
glTexCoord2f(0.0f, 0.0f); glvertex3f(-1.0f, 1.0f, 1:.0F) 3
glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0F, . 1.01T,::1:07) 3
glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0 s 108, -1.0F);

//the bottom

glTexCoord2f(1.0f, 1.0f); glvertex3f(-1.0f, -1.0f, -1.0f);
glTexCoord2f(0.0f, 1.0f); glvertex3f(1.0f, -1.0f, -1.0f);
glTexCoord2f(0.0f, 0.0f); glvertex3f(1.0f, -1.0Ff, '1.0f);
glTexCoord2f(1.0f, 0.0f); glvertex3f(-1.0f, -1.0f, 1.0f);
//the right

glTexCoord2f(1.0f, 0.0f); glvertex3f(1.0f, -1.0f, -1.0f);
glTexCoord2f(1.0f, 1.0f); glvertex3f(1.0f, 1.0f, -1.0f);
glTexCoord2f(0.0f, 1.0f); glvertex3f(1.0f, 1.0f, 1.0F)5
glTexCoord2f(0.0f, 0.0f); glvertex3f(1.0f, “1:0f; 1.08);

//the left

142 Game Programming in C++: Start to Finish

glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f);
glTexCoord2f(1.0f, 0.0f); glvertex3f(-1.0f, 210080 - 1.08);
glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0F 5 1..0f):
glTexCoord2f(0.0f, 1.0f); glvertex3f(-1.0f, 1.0f, -1.0f);
//Finished sending primitives
glEnd();

//you are finished with the display list. Close it off
glEndList();

Moving the Cube

Although you learned about object translation, rotation, and scaling in Chapter 5,
“Graphics Programming Mathematics,” you can now directly manipulate your new
cube object to experiment with the effects of these graphics transformations.

Rendering the Cube

The cube has been positioned within the game world and is awaiting presentation -
to the screen. You have already learned how to render an object using a display list,
so the following code snippet of Listing 6.26 should not come as a surprise.

LISTING 6.26 Render the Cube

//store the current matrix onto the stack, giving you a new one
glPushMatrix();

//reset the matrix to the identity

glLoadIdentity();

//apply a transformation to orient the object 5 units into the scene
glTranslatef(0.0f, 0.0f, -5.0f);

//rotate the object on the y-axis by m_fYRotation degrees
glRotatef(m_fYRotation, 0.0f, 1.0f, 0.0f);

//rotate the object on the z-axis by m_fZRotation degrees
glRotatef (m_fZRotation, 0.0f, 0:0F, .1..0T);

//call and execute the cube's display list

glCalllList(m_uTriDisplaylList);

//restore our matrix

glPopMatrix();

Creating an OpenGL Renderer 143

WORKING WITH FOG

In most early 3D games, you might have remembered the heavy use of fog effects
to hide any limitations of the hardware back at that time. Games such as Turok: The
Dinosaur Hunter from Acclaim used this effect extensively through each level and
seamlessly incorporated fog into the scene. The final effect was two-fold: not only
did the fog add a mysterious element to the whole Turok jungle environment expe-
rience, but it enabled the game to obscure objects that were farther away, thus im-
proving scene performance. Within OpenGL, fog calculations are a simple matter
for the state machine, and everything is done in hardware for you.

OpenGL fog is calculated by blending the color of the fog with each pixel in the
affected area. The blending calculation uses a factor that is dependent upon the dis-
tance of the viewer from the fog, how dense the fog is supposed to be, and which fog
mode is enabled.

To enable the fog calculations in OpenGL, you only need to enable its state,
after which you specify any additional parameters.

€D /chapter_06/BasicFog is a small demo project that demonstrates how fog is
e ysed. Listing 6.27 details the pertinent sections of code performed during the setup
of the scene.

LISTING 6.27 A Sample of Fog

GLuint fog_modes = GL_EXP;

GLfloat fog_color[4] = {0.5f, 0.5f, 0.5f, 1.0f}; //use a basic grey
glFogi(GL_FOG_MODE, fog_mode); //set the mode to GL_EXP

glFogfv(GL_FOG_COLOR, fog_color); //apply the grey fog color
glFogf(GL_FOG_DENSITY, 0.35f); //set the density of the fog

glHint (GL_FOG_HINT, GL_NICEST); //apply fog calculations per pixel
glFogf(GL_FOG_START, 5.0f); //set the front fog "plane"

glFogf(GL_FOG_END, 15.0f); //set the rear fog "plane”

glEnable(GL_FOG); //enable the fog calculations

There are three basic fog modes that you can use in OpenGL: exp, exp2, and
linear.

GL_EXP: A basic fog effect that pretty much applies the fog color to the entire
scene. The final fog effect of this type is not very realistic and meant for much
older hardware.

144 Game Programming in C++: Start to Finish

GL_ExP2: This is the successor to the GL_EXP fog type. It will apply the fog
color to the entire scene, but will also apply some depth information to each
fogged pixel.

GL_LINEAR: This is the overall best fog rendering mode available. You can
specify a fog band, and OpenGL will properly calculate how much of the fog
color to apply to pixels moving in and out of this band area.

BasicFog Demo

After you launch the BasicFog compiled binary, you will be able to see how fog cal-
culations are performed by OpenGL. Figure 6.8 shows a sample output.

FIGURE 6.8 BasicFog output.

CHAPTER EXERCISES

1. Taking the SceneFont object that you used to render text with, find a way to
further optimize the class. Hint: The less state changes the OpenGL context
needs to make, the faster the scene.

Creating an OpenGL Renderer 145

2. Open the BasicFog project and experiment with different fog colors and
density levels. It is interesting to adjust the color to see the final scene pro-
duced by OpenGL.

3. Just for fun, do a small comparison of OpenGL and Direct3D. Keep a small
list handy of what you like and dislike about each API. This will help you
on any future gaming projects.

SUMMARY

Although this was a whirlwind introductory tour of OpenGL, you learned quite a
lot about creating and using an OpenGL context. The concepts behind the Fixed
Function Pipeline and the architecture of OpenGL itself should be much clearer
now as you begin to develop some experience with the API. You learned what tex-
ture mapping is and how to do it. You also learned about using display lists to cache
certain OpenGL commands to optimize rendering, as well as how to load and use
your own font texture, and you were given an introduction to the use of fog within
a scene. With these basics covered in OpenGL, in the next chapter you will focus
more on some of the advanced capabilities of the popular graphics API.

More OpenGL Techniques

Chapter Goals

m Introduce and describe the OpenGL lighting system.
® Discuss blending techniques to create transparent polygons.
® Introduce and discuss the OpenGL extension mechanism.

much more to learn about how to create a proper lighting level to increase
the realism of your game, along with many other effects/tricks that can be
done. This chapter focuses both on increasing your knowledge of OpenGL as well
as adding these new techniques to the SceneRenderer interface in the Peon engine.

By now, you have a basic footing in OpenGL programming, but you have

LIGHTING AND MATERIALS

You have learned how to create vertices and position them within your game world
using the DiffusePrim object. To add another feeling of realism, you need to learn
an important aspect of 3D programming— adding proper lighting to the scene.

147

148

Game Programming in C++: Start to Finish

To approximate the look and feel of light within the real world, OpenGL uses
several calculations (and approximations) to create the red, blue, and green com-
ponents of light as well as how these light rays interact with objects within the
scene.

One of the aids that OpenGL uses to compute the color components of a scene
object or mesh is through the use of a material. A material defines the basic light-
ing properties such as how an object absorbs or reflects light. The three important
characteristics of materials used in lighting calculations are ambient, diffuse, and
specular.

Ambient: Ambient light does not seem to come from any particular source
within the game world, and so surfaces containing these light properties reflect
the light in all directions. It creates a general level of light throughout the scene.

Diffuse: Unlike ambient lighting, diffuse light comes from a particular direc-
tion and usually is reflected evenly across your object. This kind of lighting is
what gives every object its color in your scene, from the color of your monsters
to how the player appears.. Think of it as the way light is reflected off of every-
thing you encounter in your world.

Specular: Specular lighting is another kind of directional lighting; however, it
is reflected in a particular direction and creates a bright spot on the surface of
reflection. This bright spot, also known as a specular highlight, can be used in
your scenes to create effects such as shiny objects or spotlights.

The OpenGL pipeline has been optimized for lighting calculations so all you
need to do is enable a few of the internal states. You also will need to properly se-
lect and position all of your light sources within the scene, after which you will need
to select the material you want to use for your objects in order to properly define
how they will reflect light.

LISTING 7.1 Using OpenGL Lighting

//snip
//the ambient light..it is a 4-tuple property
float ambient_light[] = { 0.5f, 0.5f, 0.5f, 1.0f ¥

//the diffuse light..another 4-tuple property
float diffuse_light[] = { 0.25f, 0.25f, 0.25f, 1.0f };

//the position of the light — the 1.0f at the end means the first
//three values are the x,y,z position of the light in your world
float position_light[] = { 0.0f, 0.0f, 0.0f, 1.0f };

More OpenGL Techniques 149

//a definition of a generic ambient material

float material_ambient[] = { 1.0f, 1.0%,:1.0f, 1.0F: };
//provide a default diffuse material

float material_diffuse[] = { 1.0f, 1.0f, 1.0f, 1.:0F);

//now you set up your FFP states
//enable the lighting state machine in OpenGL
glEnable(GL_LIGHTING);

//setup the materials for the 1st light, refrenced as LIGHTO
glMaterialfv(GL_FRONT, GL_AMBIENT, material_ambient)5
glMaterialfv(GL_FRONT, GL_DIFFUSE, material diffuse) i

/ /setup light O

glLightfv(GL_LIGHTO, GL_AMBIENT, ambient_light);
glLightfv(GL_LIGHTO, GL_DIFFUSE, diffuse_light);
glLightfv(GL_LIGHTO, GL_POSITION, position_light);

//finally enable the light
glEnable(GL_LIGHTO);

In OpenGL, you can use up to eight lights at a time per scene or more depending
upon the available hardware. As you might imagine, this gets incredibly computa-
tionally expensive and can really cause performance problems. Be sure to find the
optimal number of lights for your scene to achieve the desired effect but use as few
as necessary.

Defining Surface Normals

ON THE CD

Recall from Chapter 5, “Graphics Programming Mathematics,” that the normal
vector is perpendicular to a plane or surface. Normal vectors are critical compo-
nents of the lighting pipeline as they help OpenGL calculate the orientation of the
object to the light source.

Do not forget that taking the cross product of any two vectors on the same plane is
one method of obtaining the surface normal. Refer back to Chapter 5 on how to
calculate the cross product.

Using the glNormal family of functions, you embed the primitive’s normal di-
rection in the rendering code as you pass in the vertices for the object. Listing 7.2
should help clear this up.

150 Game Programming in C++: Start to Finish

LISTING 7.2 Rendering a Flat Square

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glLoadIdentity();

//the goal is to render a quad which is just a flat square
//the vector normal to the surface of this quad is just straight
//up, so you'll define it as 0.0f, 1.0f, 0.0f.
glBegin(GL_QUADS);
glNormal3f(0.0f, 1.0f, 0.0f)i
glvertex3f(-1.0f, 1.0f, 1.0f ¥
glVertex3f(-1.0f, 1.0f, -1.0f);
glvertex3f(1.0f, 1.0¢,- -1,0F);
glvertex3f(1.0f, 1.0f, 1.0f);
glEnd();

glPopMatrix();
glFlush();
SDL_GL_SwapBuffers();

Adding Light Support to the SceneRenderer

You can add this lighting capability to the Peon engine. The goal is to add some
basic but useful lighting support into the SceneRenderer interface.
You need to define a simple light object that you can create and use for ma-
“<. , nipulating the lighting levels in your scene. In the /Peon/ PeonMain/include folder,
ovmeeo there is the SceneLight.h file, which is shown in Listing 7.3.

LISTING 7.3 SceneLight.h

namespace peon

{

/**

* \brief This object handles any light settings we want
x)
class PEONMAIN_API Scenelight
{
public:
/1! Handles the diffuse component
Vector4 m_vecDiffuse;

More OpenGL Techniques 151

//! Handles the ambient component
Vector4 m_vecAmbient;

//! Handles the position/direction of the light
Vector4 m_vecPosition;

public:
/**
* Constructor
*/
ScenelLight(){};
/**
* Destructor
*/
virtual ~SceneLight(){};
//snip!

}s
}

Next, you will need a way to set a light within the SceneRenderer interface in
<< order to apply whatever lighting modifications you want. In the /Peon/PeonMain/
wmew SceneRenderer.h file, you can add this support. Listing 7.4 details what you are

adding.

LISTING 7.4 Adding to SceneRenderer.h

class PEONMAIN_API SceneRenderer

{
//snip

//only provide support for 8 lights.
//Anything less would be uncivilized.
SceneLight m_oLights[7];

//snip

//now add a method to set a light
void setLight(int light_slot, SceneLight& oLight) = 0;

//snip
b

152 Game Programming in C++: Start to Finish

As you can see, the SceneRenderer interface now provides you with an accessor
method for linking a particular SceneLight object into the scene.

Implementing Light Support in SceneRenderer

The bulk of the work that needs to be done is within the SceneRenderer. cpp file
where you take the sceneLight object that you defined earlier and work it into the
available OpenGL commands. Listing 7.5 details what it is you are modifying.

LISTING 7.5 Modifications to SceneRenderer-. cpp

void SceneRenderer::setLight(int light_slot, ScenelLight& oLight)
{
m_oLights[light_slot] = oLight;
GLenum eLight = GL_LIGHTO;
switch(light_slot)
{
case 1:
eLight = GL_LIGHT1;
break;

case 2:
eLight = GL_LIGHT2;
break;

case 3:
eLight
break;

GL_LIGHT3;

case 4:
eLight
break;

GL_LIGHT4;

case 5:
eLight = GL_LIGHT5;
break;

case 6:
eLight
break;

GL_LIGHTS;

case 7:

eLight = GL_LIGHT7;

break;

float ambient([4];
float diffuse[4];
float position[4];

ambient[O0]
ambient[1]
ambient[2]
ambient[3]

diffuse[0]
diffuse[1]
diffuse[2]
diffuse[3]

position[0]
position[1]
position[2]
position[3]

glLightfv(
// Set our

glLightfv(
/| Set our

glLightfv(

oLight.
oLight.
oLight.
oLight.

oLight.
oLight.
oLight.
oLight.

oLight.
oLight.
oLight.
oLight.

eLight, GL_AMBIENT,
ambience values (Default color without direct

eLight, GL_DIFFUSE,
diffuse color (The light color)

m_vecAmbient.
m_vecAmbient.
m_vecAmbient.
m_vecAmbient.

m_vecDiffuse.
m_vecDiffuse.
m_vecDiffuse.
m_vecDiffuse.

m_vecPosition.
m_vecPosition.
m_vecPosition.
m_vecPosition.

/| This sets our light position

glEnable(eLight);

// Turn this light on

More OpenGL Techniques

ambient);

diffuse);

eLight, GL_POSITION, position);

//if we're setting a light, then at least we should
//enable lighting
glEnable(GL_LIGHTING);

glEnable(GL_COLOR_MATERIAL);

153

light)

154

Game Programming in C++: Start to Finish

Sample Demonstration

Included in the source code for this chapter is the BasicLight demonstration pro-
ject. It is an example of how to create a new SceneLight object and adjust some basic
lighting properties for use in your rendering pipeline.

ALPHA-BLENDING AND TRANSPARENCIES

Blending operations within OpenGL enables you to create effects using trans-
parency in your scenes. Blending allows you to create or simulate water, windows,
glass, and just about any object that you want to be able to see through.

Blending is also most often used for rendering textured sprites and back-
grounds, as you can then use the help of the alpha channel information stored in
your texture data to seamlessly display your sprite in your scene. Normally when
you create a texture or other image that you want to use within your game, the
image data is stored in a format containing the three common Red-Blue-Green
channels. Some additional image formats, such as the popular Targa (or TGA), en-
able you to access additional information stored in the Alpha channel, which has
the added benefit of helping OpenGL calculate which sections to draw and which
should be blended with the background scenery.

When you enable any blending operations in the pipeline, it is a signal for
OpenGL to combine the color information of the incoming primitive with the
color data that already exists within the frame buffer. The result is then stored back
into the frame buffer. Color values are typically represented within OpenGL in the
RGBA format. This means the RGB values represent the red, green, and blue col-
ors, with the alpha component representing the opacity of the object. The lower the
opacity of an object, the more transparent it is.

In this case, the alpha channel acts as a mask for determining how opaque or
transparent a texel is. A texel containing the actual sprite data has an opaque alpha
channel value (1.0f), but a texel outside of the sprite should contain a fully trans-
parent alpha channel value (0.0f). .

The blending equation used by OpenGL is shown in Equation 7.1.

(RsSr + RdDr,GsSg + GdDg, BsSb +BdDb, AsSa + AdDa) (7.1)

The S and D components are the source and destination blend factors that you
specify with the g1B1lendFunc method. The incoming primitive is labeled the source,
and the currently stored pixel within the frame buffer is referred to as the destination.

- 2 & o s s X = 3
S M W s S G B B R e R B R o e I o v e S e AN A e O R ARt DA s |

More OpenGL Techniques 155

Listing 7.6 provides a sample of using some blending within the scene, as you
will be placing two textured objects within the scene.

LISTING 7.6 Sample Blending

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT 5
glLoadIdentity();

//snip

//enable blending states
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

//snip

//render a simple object..this could be a window, etc
//specify an alpha channel of 0.5 in order to allow
//us to see through this object

glBegin (GL_TRIANGLES);

glColor4f(1.0f, 1.0f, 1.0f, 0.5);

//vertex 1, 2, 3, 4, 5, 6

glEnd();

glFlush();
SDL_GL_SwapBuffers() ;

The g1BlendFunc method is the one responsible for letting the OpenGL context
know which blending operation to perform on the source and destination pixel colors.

) For the majority of the transparency effects used in your game, you will only need
ON E D to use the GL_ONE_MINUS_SRC_ALPHA blending calculation to properly render trans-
parent artifacts to the screen.

Sample Demonstration

Now that you have been given an introduction to using and enabling blending cal-

culations within OpenGL, you can see how this works in the BasicBlending sample
(< included on the CD-ROM. You need to indicate only which states to switch the
ovme@ graphics pipeline to, and the underlying OpenGL layer will handle the rest.

156 Game Programming in C++: Start to Finish

VERTEX ARRAYS

Until now you have been defining and rendering simple objects for use in rendering
with OpenGL. There will come a time, however, when you need to work with vari-
ous models composed of hundreds or thousands of vertices in your game world. De-
claring each of these models within your code is just not a practical solution.

Vertex arrays give you a way to store large batches of vertices within different
types of arrays. For example, you could store the vertices containing position in-
formation in one array, the vertex texture information in another, and so on. This
design is open enough to let you decide how you want to store and batch your scene
data, while allowing OpenGL to optimize the location in memory where your ver-
tices are stored. Depending upon the available memory on your graphics card,
OpenGL can either store your vertex data in video memory or system memory.

To use vertex arrays, you must enable/disable them using a slightly different
function pair of glEnableClientState/glDisableClientState. The parameters you
use in each method define the type of array you want to enable or disable.

The type of array you can enable or disable is shown in Table 7.1

TABLE 7.1 Vertex Array Types

Flag Description
GL_COLOR_ARRAY : Contains color info for each vertex
GL_EDGE_FLAG_ARRAY Contains edge flags for each vertex
GL_INDEX_ARRAY Contains indices to the color palette for each
vertex ’
GL_NORMAL_ARRAY Contains normal information for each vertex
GL_TEXTURE_COORD_ARRAY ; Contains texture coordinate data for each vertex
GL_VERTEX_ARRAY Contains position of each vertex
€ Listing 7.7 demonstrates a way to set up vertex arrays, contained in the Ba-

ovmecd sicVertexArray sample project on the CD-ROM.

LISTING 7.7 BasicVertexArray

/1 Array of all vertex data. It is just a plain unit square
sVertex SquarePoints[4] =

More OpenGL Techniques

{ 1.0f, -1.0f, 0.0f },
[-1.0¢, -1.0f, 0.0},
{ -1.0f, 1.0f, 0.0f },
{ 1.0f, 1.0f, 0.0f }

}s

// Stucture to hold all texture coordinate information
struct sTexCoords
{
float t, u;
}s

/| Array of all texture coords for each point.
sTexCoords SquareTexCoords[4] =
{
{ 1.0f,.0:0fF },
{ 0.0fy 0.0f.},
{ 0.0f, 1.0f },
{ 1.0f, 1.0f }
b

// Structure to hold all colors for each point.
struct sColor
{
float r, g, b, a;
};

// Array of all colors for each point. Every side is a different
//color for a more interesting demo
sColor SquarePointColors[4] =
{
{ 1.0f,-00f; 1.0f, 1.0f %},
{ 1.0f, 0.0f, 1.0f, 1.0f .},
{ 1:0F;=0:5% 4:0F;-1:07 35
{. 0.5f, 1.0f, 1.0F, 107 }
};

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();

157

158 Game Programming in C++: Start to Finish

/1 Translate and rotate the object.
glTranslatef(0.0f, 0.0f, -6.0f);
glRotatef(-50.0f, 1.0f, 0.0f, 0.0f);
glRotatef(-15.0f, 0.0f, 1.0f, 0.0f);

// Bind the texture.
glBindTexture(GL_TEXTURE_2D, square_tex);

/] Enable all client states we are using.
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState (GL_TEXTURE_COORD_ARRAY);

/1 Load the data to each pointer type we need.
glvertexPointer(3, GL_FLOAT, 0, SquarePoints);
glColorPointer(4, GL_FLOAT, 0, SquarePointColors);
glTexCoordPointer(2, GL_FLOAT, 0, SquareTexCoords);

// Draw the entire object.
glDrawArrays(GL_QUADS, 0, 4);

/| Disable all the client states we enabled.
glDisableClientState (GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState (GL_TEXTURE_COORD_ARRAY);

SDL_GL_SwapBuffers();

Vertex arrays help to speed up the rendering process through OpenGL, as they
offload more vertex processing to the video hardware rather than have the CPU
spend precious cycles feeding the pipeline one vertex at a time.

THE OPENGL EXTENSION MECHANISM

An important design aspect of the OpenGL API is the concept of the extension
mechanism. Because graphics hardware capabilities often advance more rapidly
than the core specification can keep up with, vendors have the ability to add new
rendering features to expose any new functionality in the graphics hardware.

When you want to take advantage or query the extensions supported by the
current OpenGL context, you need to parse through a character array return by the
glGetExtensions function.

More OpenGL Techniques 159

ARB: An extension approved by the OpenGL ARB

EXT: An extension agreed upon by multiple vendors
NV: A proprietary extension of NVIDIA Corporation
ATI: A proprietary extension of ATI Technologies Inc.
APPLE: A proprietary extension of Apple Computer Inc.

The simplest method of extension querying is to search for the name of the ex-
tension within the space delimited list of extensions supported on the hardware re-
turned by the glGetExtensions function. Listing 7.8 demonstrates one way of
handling this mechanism, which is defined within the SceneRenderer.

LISTING 7.8 Simple Method to Query Extensions

bool SceneRenderer::isExtensionSupported(const String& ext)

{
int pos = 0;
bool supported = false;
int n = (int)ext.length();
String extensions ((char *)glGetString(GL_EXTENSIONS));
while(!supported)
{
//if the extension defined in string 'ext' is within 'extensions'
if (extensions.compare(pos, n, ext) >= 0)
{
return true;
}
pos = extensions.find(' ' , pos) + 1;
if(pos <=0)
return false;
}
return false;
}

After you have determined whether your video hardware can support the de-
sired extension, simply use the SDL_GL_GetProcAddress method to grab the neces-
sary function pointer from the OpenGL ICD provided by the video hardware

“vendor. You learn more about this as you go through some extensions throughout
this chapter.

Game Programming in C++: Start to Finish

€D Be careful when using extensions in your game. It is important to verify that the
G o desired extension is supported, along with a backup procedure in case it is not
available.
MULTITEXTURING
A common use of the extension mechanism is to query the video hardware for mul-
titexturing support. Multitexturing is the practice of combining the data of two or
more textures to the same set of vertices.

For example, one common use of multitexturing in a game might be to display
scorch marks on a building wall. The data from the scorch texture can be applied
to the texture information of the building exterior and presented in one pass
through the pipeline.

The OpenGL Architecture Review Board defines multitexturing specification
as a set of texture units that form a chain. Each texture unit passes its output to the
inputs of the next texture unit in the chain until the final product is rasterized to the
OpenGL framebuffer. Listing 7.9 details how to query the hardware for multitex-
turing support.

LISTING 7.9 Querying Extensions for Multitexturing Support
//Somewhere in the file, include a definition for the function.
//This can be directly cut and pasted from the glext.h header
//file.
PFNGLMULTITEXCOORD2FARBPROC glMultiTexCoord2fARB = NULL;
//pRenderer is a valid SceneRenderer pointer
if(pRenderer->isExtensionSupported("GL_ARB_Multitexture"))
{
//the hardware supports this extension, so load the handle to the
//relevant function using SDL_GL_GetProcAddress
pglMultiTexCoord2fARB = (PFNGLMULTITEXCOORD2FARBPROC)
SDL_GL_GetProcAddress("glMultiTexCoord2fARB");
}
) A possible backup procedure you might want to try if the multitexturing extension
ON THE CD

is not supported is multipass rendering in which you would set your bottom layer
texture, render the quad, set the bottom layer texture again with the overlay, and
then re-render the quad again using the same vertices.

More OpenGL Techniques 161

Working with the Texture Units

ON THE CD

A single texture unit is composed of the texture image, a texture matrix stack, and
some filtering parameters, among other useful properties.

Using the glActiveTextureARB function, you need to specify the current texture
unit that you are assigning any texture parameters. After this, all of the giTexIm-
age*(), glTexParameter*(), glTexEnv*(), glTexGen*(), and the glBindTexture
functions will affect the chosen texture unit.

Since you are applying more than one texture for the surface you are working
with, you need a way to define multiple sets of texture coordinates. The giMulti-
TexCoord2fARB function allows you to do this within the current texture unit. You
must use this method before you specify the vertex position within the
glBegin/glEnd pair. Listing 7.10 demonstrates one way to accomplish multitextur-
ing taken from the /chapter_07/BasicMultitexturing sample on the CD-ROM.

LISTING 7.10 Multitexturing

//some multitexturing function pointers
PFNGLMULTITEXCOORD2FARBPROC glMultiTexCoord2fARB = NULL;
PFNGLACTIVETEXTUREARBPROC glActiveTextureARB = NULL;
PFNGLCLIENTACTIVETEXTUREARBPROC glClientActiveTextureARB = NULL;
if(peon::EngineCore::getSingleton().getRenderer()-'
>isExtensionSupported(
"GL_ARB_multitexture"))

glMultiTexCoord2fARB = (PFNGLMULTITEXCOORD2FARBPROC)
SDL_GL_GetProcAddress("glMultiTexCoord2fARB");

glActiveTextureARB = (PFNGLACTIVETEXTUREARBPROC)
SDL_GL_GetProcAddress("glActiveTextureARB");

glClientActiveTextureARB = (PFNGLCLIENTACTIVETEXTUREARBPROC)
SDL_GL_GetProcAddress("glClientActiveTextureARB");

//load your textures into OpenGL
SceneRenderer* pRenderer =
EngineCore::getSingleton().getRenderer();
SceneTexture* pTex1 = pRenderer->
loadImage("data\\textures\\brick.bmp");

162 Game Programming in C++: Start to Finish

SceneTexture* pTex2 = pRenderer->
loadImage("data\\textures\\scorch.bmp");

//activate the first texture in the pipeline
glActiveTextureARB(GL_TEXTUREO_ARB) ;

glEnable (GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D, pTex1->getTex());

//activate the second texture in the pipeline
glActiveTextureARB(GL_TEXTURE1_ARB);

glEnable (GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D, pTex2->getTex());
//add other texture manipulation states here

//render your quad here with multitexturing support!
glBegin (GL_QUADS) ;
glNormal3f(0.0f, 0.0f, 1.0f); //normal coming out of the screen

glMultiTexCoord2fARB(GL_TEXTUREO_ARB, 1.0f, 1.0f);
glMultiTexCoord2fARB(GL_TEXTURE1 ARB, 1.0f, 1.0f);
glvertex3f(1.0f, 1.0f, 1.0f);

glMultiTexCoord2fARB(GL_TEXTUREO_ARB, 0.0f, 1.0f);
g1MultiTexCoord2fARB(GL_TEXTURE1_ARB, 0.0f, 1.0f);
glvertex3f(-1.0f, 1.0f, 1.0f);

o
-

o

glMultiTexCoord2fARB(GL_TEXTUREO_ARB, 0.0f, 0.0f);
glMultiTexCoord2fARB(GL_TEXTURE1_ARB, 0.0f, 0.0f);
glvertex3f(-1.0f, -1.0f, 1.0f);

glMultiTexCoord2fARB(GL_TEXTUREO_ARB, 1.0f, 0.0f);
glMultiTexCoord2fARB(GL_TEXTURE1_ARB, 1.0f, 0.0f);
glvertex3f(1.0f, -1.0f, 1.0f);

glEnd();

CHAPTER EXERCISES

1. Inspect further OpenGL documentation for other uses and properties
available in the lighting engine of the API. Experiment with spotlights, am-
bient effects, and attenuation to create the lighting effect you want and add
them to the sceneLight object in the Peon engine.

More OpenGL Techniques 163

2. Although you learned only the basics about blending, experiment with dif-
ferent colors, alpha buffer values, and even blending operations to see how
they affect the output to your final scene.

3. Be sure to inspect the OpenGL specification for the additional extensions
that are available to you. A large number of useful ones available can help
to streamline your scene.

SUMMARY

Although you still have not learned every aspect of OpenGL programming, you
have quickly been introduced to a lot of topics. It is important to understand the
basics first, before you can jump ahead to some more advanced effects that you will
learn later in this book. The approach of this chapter was to build upon your basic
OpenGL knowledge. You learned about how OpenGL processes commands to light
your scene, along with how to use blending operations to create the transparency
effect you can use in your games. Vertex arrays are methods that you can use to
speed up the vertex rendering within your scene, as they have the capability to
cache large batches of vertices that you can specify in the scene or load from a
model. You were also introduced to how to query the OpenGL extension mecha-
nism to add multitexturing capabilities to your repertoire. You can now use
OpenGL within your game projects. In the next chapter you will learn how to use
the OpenGL objects you created in the Peon engine, which will help you under-
stand some basic concepts around scene management and how to improve the ren-
dering performance of your game world.

TS LT AV Py S I s

Scene Geometry
Management

Chapter Goals

®m Introduce the OpenGL depth buffer.

Introduce view frustum culling.

Introduce and discuss scene graphs.

Create a simple scene graph within the Peon engine.

in your game world, you will notice scene performance begin to drastically

degrade. With the Fixed Function Pipeline model that you have been work-
ing with so far, pixel visibility is not determined until the final transformation stage
of the pipeline. As your game world data increases, relying on the hardware to
process the information is simply not enough, as you are potentially sending thou-
sands of primitives to the pipeline that are not even relevant to the scene. Remov-
ing objects and primitives before they reach the pipeline is labeled in a broad sense
as “culling techniques,” which you will learn more of in this chapter.

3 s more objects and state changes in the graphics pipeline start to accumulate

166 Game Programming in C++: Start to Finish

THE DEPTH BUFFER

The bulk of scene geometry management techniques involves the attempt to orga-
nize your scene such that unnecessary pixel information is not sent through the
graphics pipeline. Another concept involved in this discussion on geometry man-
agement is the theory behind hidden surface removal. In a more concrete imple-
mentation of hidden surface removal, the OpenGL pipeline provides an additional
buffer known as the depth buffer. As the pipeline processes the pixel data for the
scene to be presented to the video display, the depth information (z coordinate) is
stored in this buffer which is usually represented as a two dimensional array. As
pixel information is added to the array, the hardware determines if another pixel
already occupies the same position. If this z-coordinate collision is detected, then
the hardware will overwrite the location in memory with whichever pixel is closest
to the camera. The depth buffer preserves the illusion of depth within a scene by
overlapping objects which are further away by objects that are closer to the camera.

Although you will gain much more experience with the depth buffer in
OpenGL, you will only ever really need to worry about when to enable or disable it.
Using the familiar gleEnable/glbisable commands with the GL_DEPTH_TEST para-
meter, you can enable or disable OpenGL from using the depth information when
rendering the scene. Normally you would keep the usage of the depth buffer en-
abled to maintain proper object depth positioning. A situation where you might
think of disabling the depth buffer is when you wish to achieve a transparency ef-
fect. For example, an object passing behind a window would require the disabling
of the depth buffer in order to ensure the object viewable from the window is not
removed from the scene.

VIEW FRUSTUM CULLING

A common method of filtering down the amount of vertices sent through the
graphics pipeline is a technique known as View Frustum culling. This technique in-
volves taking your view and projection matrices and calculating a bounding box for
the entire view volume. If a vertex (or mesh) is marked as being outside of this
bounding box, it is not visible by the currently active camera, so you do not need
to send it through the pipeline.

In Figure 8.1, the area cone projected by the scene’s camera is segmented into
six planes.

Scene Geometry Management 167

Horizontal FOV l

Top

g
Far
B

Vertical FOV
Right

A

Eyepoint

Bottom

FIGURE 8.1 The camera’s View Frustum.

As you can see from Figure 8.1, you need to extract the plane information for
the six clipping planes formed by the View Frustum and then use it to test whether
or not your vertex lies somewhere within, on, or outside these boundaries (that is,
clipping spaces).

The Scenecamera object of the Peon engine that was introduced in Chapter 5,
“Graphics Programming Mathematics,” contains the necessary code for using a
View Frustum culler agent with your applications. Please inspect Listing 8.1 for
using this culler object.

LISTING 8.1 Calculating the Six Planes of the View Volume

void SceneCamera::generateViewFrustum()
{
float matProj[16]; // projection matrix
float matView[16]; // model-view matrix
float mat_mvp[16]; // model-view-projection matrix

//glGetFloatv with the -GL_PROJECTION_MATRIX flag will
//pull the projection matrix from the FFP.
glGetFloatv(GL_PROJECTION_MATRIX, matProj);

168

Game Programming in C++: Start to Finish

//glGetFloatv with the GL_MODELVIEW_MATRIX flag will pull
//the view matrix from the FFP.
glGetFloatv(GL_MODELVIEW_MATRIX, matView);

// The product of the projection matrix and the model-view matrix
/| produces the concatenated model-view-projection matrix. Note
//that the Matrix44 object could be used here, but the longhand

//demonstrates and reinforces the calculations.

mat_mvp[O] = matView[O] * matProj[O] + matView[1] * matProj[

4] + matView[2] *
matProj[8] + matView[3] * matProj[12];

mat_mvp[1] matView[O] * matProj[1] + matView[1] * matProj[5]
matView[2] matProj[9] + matView[3] * matProj[13];
mat_mvp[2] matView[O] * matProj[2] + matView[1] * matProj[6]
matView[2] matProj[10] + matView[3] * matProj[14];
mat_mvp[3] matView[O] * matProj[3] + matView[1] * matProj[7]
matView[2] * matProj[11] + matView[3] * matProj[15];
mat_mvp[4] matView[4] * matProj[O] + matView[5] * matProj[4]
matView[6] matProj[8] + matView[7] * matProj[12];
mat_mvp[5] matView[4] * matProj[1] + matView[5] * matProj[5]
matView[6] matProj[9] + matView[7] * matProj[13];
mat_mvp[6] matView[4] * matProj[2] + matView[5] * matProj[6]
matView[6] matProj[10] + matView[7] * matProj[14];
mat_mvp[7] matView[4] * matProj[3] + matView[5] * matProj[7]
matView[6] matProj[11] + matView[7] * matProj[15];
mat_mvp[8] matView[8] * matProj[O] + matView[9] * matProj[4]
matView[10] matProj[8] + matView[11] * matProj[12];
mat_mvp[9] matView[8] * matProj[1] + matView[9] * matProj[5]
matView[10] * matProj[9] + matView[11] * matProj[13];
mat_mvp[10] matView[8] * matProj[2] + matView[9] * matProj[6]
matView[10] matProj[10] + matView[11] * matProj[14];
mat_mvp[11] matView[8] * matProj[3] + matView[9] * matProj[7]
matView[10] matProj[11] + matView[11] * matProj[15];
mat_mvp[12] matView[12] * matProj[O] + matView[13] * matProj[4]
matView[14] matProj[8] + matView[15] * matProj[12];
mat_mvp[13] matView[12] * matProj[1] + matView[13] * matProj[5]
matView[14] matProj[9] + matView[15] * matProj[13];
mat_mvp[14] matView[12] * matProj[2] + matView[13] * matProj[6]
matView[14] matProj[10] + matView[15] * matProj[14];

Scene Geometry Management 169

mat_mvp[15] = matView[12] * matProj[3] + matView[13] * matProj[7] +
matView[14] * matProj[11] + matView[15] * matProj[15];

// This will extract the RIGHT side of the frustum
m_oFrustum[RIGHT].normal.x mat_mvp[3] - mat_mvp[O];
m_oFrustum[RIGHT].normal.y mat_mvp[7] - mat_mvp[4];
m_oFrustum[RIGHT].normal.z = mat_mvp[11] - mat_mvp[8];
m_oFrustum[RIGHT].d = mat_mvp[15] - mat_mvp[12];

// normalize the RIGHT Plane using the a,b,c and d components
m_oFrustum[RIGHT].normalise();

// This will extract the LEFT Plane of the frustum
m_oFrustum[LEFT].normal.x mat_mvp[3] + mat_mvp[O];
m_oFrustum[LEFT].normal.y = mat_mvp[7] + mat_mvp[4];
m_oFrustum[LEFT].normal.z = mat_mvp[11] + mat_mvp[8];
m_oFrustum[LEFT].d = mat_mvp[15] + mat_mvp[12];

1]

// normalize the LEFT Plane
m_oFrustum[LEFT].normalise();

// This will extract the BOTTOM Plane of the frustum
m_oFrustum[BOTTOM].normal.x mat_mvp[3] + mat_mvp[1];
m_oFrustum[BOTTOM].normal.y = mat_mvp[7] + mat_mvp[5];
m_oFrustum[BOTTOM].normal.z = mat_mvp[11] + mat_mvp[9];
m_oFrustum[BOTTOM].d = mat_mvp[15] + mat_mvp[13];

n

// Normalize the BOTTOM Plane
m_oFrustum[BOTTOM] .normalise();

// This will extract the TOP Plane of the frustum
m_oFrustum[TOP].normal.x = mat_mvp[3] - mat_mvp[1];
m_oFrustum[TOP].normal.y mat_mvp[7] - mat_mvp[5];
m_oFrustum[TOP].normal.z = mat_mvp[11] - mat_mvp[91;
m_oFrustum[TOP].d = mat_mvp[15] - mat_mvp[13];

// Normalize the TOP Plane
m_oFrustum[TOP].normalise();

// This will extract the BACK Plane of the frustum
m_oFrustum[BACK].normal.x = mat_mvp[3] - mat_mvp[2];
m_oFrustum[BACK].normal.y = mat_mvp[7] - mat_mvp[6];
m_oFrustum[BACK].normal.z = mat_mvp[11] - mat_mvp[10];
m_oFrustum[BACK].d = mat_mvp[15] - mat_mvp[14];

170 Game Programming in C++: Start to Finish

// Normalize the BACK Plane
m_oFrustum[BACK].normalise();

// This will extract the FRONT Plane of the frustum
m_oFrustum[FRONT].normal.x = mat_mvp[3] + mat_mvp[2];
m_oFrustum[FRONT].normal.y = mat_mvp[7] + mat_mvp[6];
m_oFrustum[FRONT].normal.z mat_mvp[11] + mat_mvp[10];
m_oFrustum[FRONT].d = mat_mvp[15] + mat_mvp[14];

// Normalize the FRONT Plane
m_oFrustum[FRONT].normalise();

}

After you have obtained your six View Frustum planes, you can begin testing
where the bounding sphere around each mesh is in relation to the clipping planes.
Listing 8.2 demonstrates one way to accomplish this using the math you will learn
about in Chapter 13, “Collision Detection and Physics Techniques.”

LISTING 8.2 Testing Bounding Sphere with the Plane

bool SceneCamera::isSphereInFrustum(float x, float y, float z,
float fRadius)

{
for(int i =03 i < 6 *+1)
{
if(m_oFrustum[i].normal.x * x +
m_oFrustum [i].normal.y * y +
m_oFrustum [i].normal.z * z +
m_oFrustum [i].d <= -fRadius)
return false;
}
return true;
}

€ Check the /chapter_08/BasicviewFrustum sample contained on the CD-ROM.
wmE®D You will be able to enable or disable the View Frustum testing to see for yourself
how performance is affected.

BASIC SCENE HIERARCHY MANAGEMENT

While the View Frustum culling technique is an important addition to your graph-
ics repertoire, there is still room for improvement, as you are always processing

Scene Geometry Management 171

every mesh within the game world through the View Frustum calculations no mat-
ter where the relative positions are from the player.

In order to improve this process, most 3D engines create and use a hierarchy
structure to organize and model mesh and primitive data within the game world.
These hierarchy approaches are known as scene graphs, and they can offer a tremen-
dous performance boost to your application.

Most scene graphs are modeled as a tree structure also known as directed acyclic
graphs (DAGs) since scene graphs cannot contain cycles. DAG structures are formed
such that a single parent node can have up to child nodes, which can themselves
be parents to other children. Child nodes lower down in the hierarchy are forbid-
den from then attempting to become parents to nodes higher up on the graph,
which would form a cycle (or a loop). Each child node can contain the objects you
want to draw along with other information that you are about to learn. Figure 8.2
details a simple DAG structure.

Scene Root

Pl St

Node Node

ek N

FIGURE 8.2 Simple DAG structure.

The immediate benefit to this approach of scene construction can be seen when
you want to add large structures such as office buildings to your game world. Each
building could itself contain #n number of nodes that represent each room. Each
room could then contain many child nodes, which describe any object in the room
such as a table, desk, chair, cactus, and so forth. If the entire building is marked as
invisible to the player, then there is no need to process any child nodes within the
structure. Figure 8.3 presents this simple graph.

An additional benefit to using scene graphs is also realized when you attempt
to move or manipulate the parent node object. Each child node will then move to
follow the parent, which saves you from having to recompute any transform oper-
ations should you be forced to move objects within the game world.

172 Game Programming in C++: Start to Finish

Office

Reception Elevator

Y
| Desk | [Floor |

FIGURE 8.3 Simple office scene graph.

For example, in the office building scene, if you move your desk you tend to
also keep your lamp, monitor, and other desk accessories.

Sorting Rendering States

Using a scene graph approach to contain your world objects not only can increase
rendering performance of your scene, but it can also serve to minimize any unnec-
essary state changes within the graphics pipeline itself. Usually any change of state
within the graphics pipeline such as setting a texture, or adjusting lighting or fog
calculations, has an associated cost of performance on your 3D hardware. Even on
the newest hardware available, it is always a benefit to your game to minimize as
many state changes as possible.

For a real-world example, imagine that you are rendering a large collection of
similar objects such as a fleet of jet fighters. Each jet fighter will have a multitude of
m state changes in order to properly render its craft texture, rubber tires, metallic
landing gears, and so on. Without any sorting, the pipeline might need to make m
X n state changes (m states multiplied by » fighter jets). Compare this to a state sort-
ing algorithm approach in which you could instead keep the current state to render
each appropriate section of the n fighter jets (that is, render all the rubber tires and
then all the landing gears, and so on). This would then reduce your necessary ren-
dering state changes to an m X I algorithm.

Animation Rendering

Using a scene graph approach can also aid with rendering or manipulating any an-
imated meshes. The animation can be constructed in the hierarchy to allow easy
calculation of any transforms that need to be applied to various nodes in the graph.

Scene Geometry Management 173

For example, your player mesh within the game world probably will contain
two arms and two legs connected by a torso. Several animations can be rendered,
depending upon the associative state in which the player is currently. There might
be walking, running, death animations, and so forth. After you have calculated
which state the player is in, you can then transform each child node of your player
mesh to perform the desired animation.

INTRODUCTION TO THE PEON SCENE GRAPH

You should now be able to create your own rudimentary node hierarchy to process
your scene objects.

You begin with the SceneRoot and ISceneNode base object definitions within the
Peon game engine. The basic algorithm the scene manager follows is to traverse
each 1SceneNode object in the hierarchy and adjust the rendering pipeline accord-
ingly. At a high level your game objects should all fit somewhere within the hierar-
chy to allow for smooth rendering and collision detection. Listing 8.3 details the
base element of the graph, the 1SceneNode.

LISTING 8.3 1ISceneNode.h

namespace peon
{
/**
* This object is used as our base root interface for anything
* that needs to be added to the scene hierarchy */
class PEONMAIN_API ISceneNode : public IUnknown

{
protected:
/** Is this node visible? */
bool m_bIsVisible;

/** The parent node */
ISceneNode* m_pParentNode;

/** Linked list of our child nodes */
std::list<ISceneNode*> m_oChildrenNodes;

/** This method is used to prepare the node for rendering.
* Last minute state changes, etc. should be done here */
virtual void onPreRender();

174 Game Programming in C++: Start to Finish

/** This method is used to render the node. */
virtual void onRender();

/** Add a child node to our list */
virtual void addChildNode(ISceneNode* pChild);

/** Drop a child node from this current node */
virtual void dropNode(ISceneNode* pChild);

[*%:snipl >}
}s
}

The 1sceneNode is an abstract base class entity that contains the common set
of methods and variables that all nodes within the scene graph will share. Any
IsceneNode object can be a parent to a hierarchy of child nodes, while also being
a child node itself within the scene graph. One of the strengths of a hierarchy
approach to object management such as this is that if you should mark one node in
the tree as invisible, then the scene graph manager should skip the processing of all
the child nodes.

The SceneRoot object within the Peon engine contains not only the top-most
node of the graph, known as the root node, but also a host of useful objects for pro-
cessing and rendering the graph. Listing 8.4 details the SceneRoot object.

LISTING 8.4 SceneRoot.h

namespace peon
{
/** This object represents the topmost (or bottom-most) node
* of the scene hierarchy tree.
*
class PEONMAIN_API SceneRoot : public ISingleton<SceneRoot>,
public ISceneNode
{
public:
[** Caonstructor: */
SceneRoot(SceneRenderer* pRenderer);
/** Destructor */
~SceneRoot () ;
/** return a reference to this object */
static SceneRoot& getSingleton(void);

Scene Geometry Management 175

/** return a pointer to this object */
static SceneRoot* getSingletonPtr(void);
1*% snipl */
}s
}

As you can see, this object implements the Singleton design pattern. You want
only one scene graph within your game at a time, and this is an easy way to imple-
ment this. During the first instantiation of this object, you will need to pass a han-
dle to the sceneRenderer interface, which will be used to render the nodes in the
graph as they are traversed.

Scene Graph States

As you learn more about what a scene graph is and what it can provide for your ap-
plication, an important consideration is any rendering state information. Concep-
tually, the scene graph contains not only the objects within your scene, but also any
necessary transformations and rendering state information to render those objects.
In other words, it is not enough to store the object you want to insert into the hi-
erarchy; you also need to specify exactly how this object will appear.

Scene Graph Passes

To maximize the efficiency of the rendering process behind the scene graph, you will
need some way of sorting the nodes of the graph by either the type of node or the re-
quested rendering operation for the node. This is important, as you could potentially
have a real mix of techniques and meshes within the same scene at one time. For ex-
ample, for a scene involving many objects of a similar type, you can optimize the
processing by generally sorting the scene objects by the texture, then by any buffered
vertex information. Keeping in mind your introduction to the OpenGL pipeline,
you should attempt to minimize state switching as much as possible.

In other words, by sorting the scene by texture, you can achieve something like:

m Select Alien Ship texture handle
m For each Alien Ship, render vertices

Instead of a situation that is largely unoptimized and problematic:
B For each Alien Ship: select Alien Ship texture and then render the vertices

Optimizing the scene graph is beyond the scope of this material, however the
preceding should be kept in mind when attempting to find any performance criti-
cal areas.

176 Game Programming in C++: Start to Finish

Scene Graph Traversal

For processing the nodes in the scene graph, either during rendering passes or for
animation and collision, you will need a somewhat efficient method to traverse the
data structure. You were just introduced to the concepts on minimizing state
changes within the graphics pipeline, and so this must be kept in mind when per-
forming any scene traversal. You must also remember to flag nodes, which are not
visible as there is no point in traversing the tree to any child nodes, when the par-
ent object cannot be seen by the player. The algorithm that you will use for the
scene graph traversal is meant to be quite simple.

For each node in the hierarchy, the tree first determines whether it is visible or
not to the player.

Ifitis visible, then check which node type it is. If the node is a render state, then
process the render state commands. Otherwise, if it is an opaque (solid) object, add
it to the solid objects display list. If the object is transparent, then add it to the trans-
parent display list.

To render the scene graph you would then process each list, first applying the
necessary OpenGL render state commands. Next you would then process each
opaque object. Finally, you would then render the transparent objects in the scene.

BINARY SPACE PARTITIONING TREES

Binary Space Partitioning trees (BSP trees) were first made popular as a graphics
data structure with the release of Wolf3D and Doom by Id Software. Although they
might not make an appearance in every 3D graphics application, they can still have
their place in the majority of engines made today depending upon your game world
layout.

Typically when using a BSP for your level or scene, you would create a separate
BSP compiler responsible for taking the map data and compiling it into a binary
format (known as a WAD for the Id games), which the engine can then use for the
traversal/rendering process. In the case of Wolf3D and Doom, these two compo-
nents were separated so that the level builders could build and test their levels with-
out the reliance of the engine.

OCTREE DATA STRUCTURE

You can also create a hierarchy that subdivides the scene into eight smaller segments,
which is referred to as an octree. The purpose of this structure is to allow for an
increase of complexity to your scene, while at the same time reducing the overhead

Scene Geometry Management 177

for object visibility calculations. See Figure 8.4, which presents the theoretical view of
your octree.

FIGURE 8.4 Octree visualization.

Building Your Octree

Although somewhat intensive, the algorithm first cycles through every vertex in the
scene adding the x, y, and z components together. When this is done, the center
point of the world is calculated by dividing each component by the total number of
vertices in the scene. This information becomes used as the overall encompassing
cube, which you then subdivide in your data structure.

The Occluder Query

Although you have touched upon a large number of algorithms used for culling
objects before they are passed into the graphics pipeline, there is still definite room
for improvement. Most geometry management techniques either want to cull too
many objects, or too few of them, still leaving a large amount of meshes to be sent
through the pipeline.

One facet that you have not yet heard about is the concept of occluders. Oc-
cluders are objects within the scene which partially or fully block the camera from
seeing other objects. Usually an occluder is a large block or building that hides
other smaller buildings behind it.

178

Game Programming in C++: Start to Finish

This is important. Although these small objects pass the View Frustum test,
they will not be seen by the player, even though the pipeline must process them.

To this extent, the OpenGL ARB has released a small handy occluder extension,
the GL_ARB_occlusion_query. Listing 8.5 defines the function pointer prototypes
that you will need to use when querying for the extension.

LISTING 8.5 Occluder Extension Basics

PFNGLGENQUERIESARBPROC glGenQueriesARB = NULL;
PFNGLDELETEQUERIESARBPROC glDeleteQueriesARB = NULL;
PFNGLISQUERYARBPROC glIsQueryARB = NULL;
PFNGLBEGINQUERYARBPROC glBeginQueryARB = NULL;
PFNGLENDQUERYARBPROC glEndQueryARB = NULL;
PFNGLGETQUERYIVARBPROC glGetQueryivARB = NULL;

PFNGLGETQUERYOBJECTIVARBPROC glGetQueryObjectivARB = NULL;
PFNGLGETQUERYOBJECTUIVARBPROC glGetQueryObjectuivARB = NULL;

The first task is to query which extensions are available to you. Listing 8.6 doc-
uments this, although you should be familiar with the code now.

LISTING 8.6 Querying for Occlusion Query Support

//pRenderer is a pre-defined SceneRenderer
if(!pRenderer->isExtensionSupported("GL_ARB_occlusion_query"))
{

/1you just do not have the necessary updated drivers.

//return nicely...

return false;

}

//initialize the function pointers to grab the needed extension

//methods from the vendor provided OpenGL dll..

glGenQueriesARB = (PFNGLGENQUERIESARBPROC)
SDL_GL_GetProcAddress ("glGenQueriesARB");

glDeleteQueriesARB = (PFNGLDELETEQUERIESARBPROC)
SDL_GL_GetProcAddress ("glDeleteQueriesARB");

glIsQueryARB = (PFNGLISQUERYARBPROC)
SDL_GL_GetProcAddress ("glIsQueryARB");

glBeginQueryARB = (PFNGLBEGINQUERYARBPROC)
SDL_GL_GetProcAddress ("glBeginQueryARB");

Scene Geometry Management 179
glEndQueryARB = (PFNGLENDQUERYARBPROC)
SDL_GL_GetProcAddress ("glEndQueryARB") ;

glGetQueryivARB = (PFNGLGETQUERYIVARBPROC)
SDL_GL_GetProcAddress ("glGetQueryivARB");

glGetQueryObjectivARB = (PFNGLGETQUERYOBJECTIVARBPROC)
SDL_GL_GetProcAddress ("glGetQueryObjectivARB");

glGetQueryObjectuivARB = (PFNGLGETQUERYOBJECTUIVARBPROC)
SDL_GL_GetProcAddress ("glGetQueryObjectuivARB");

The next step is to generate some occlusion query handles that will store the oc-
clusion calculations. Listing 8.7 shows how this is accomplished.

LISTING 8.7 Generate Occlusion Query Handles

GLuint planeQuery
GLuint boxQuery

.1;
_1;

//generate the query objects for the plane and the box
//looks similar to generating texture handles..
glGenQueriesARB(1, &boxQuery)i

glGenQueriesARB(1, &planeQuery);

Occlusion Query Algorithm

The Occlusion Query algorithm is fairly straightforward but can sound a little awk-
ward at first. You first render every object in the scene in order to capture their z
positions in the depth buffer. Next, you render every object in the scene again so
that the occlusion query can determine the object’s visibility status. If the resultant
query finds zero pixels are visible for an object, then it is culled from the scene. List-
ing 8.8 demonstrates how this is done with the box and plane objects you have in
the scene.

LISTING 8.8 Rendering Process using Occlusion Culling

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0f, 0.0f, -1.5F)3

180 Game Programming in C++: Start to Finish

//first render your objects to capture their z-buffer information
//render the plane
//render the box

//now render the objects again but wrap them inside the occluder
//objects
glBeginQueryARB (GL_SAMPLES_PASSED_ARB, planeQuery);

{
//render the plane

}
g1EndQueryARB(GL_SAMPLES_PASSED_ARB);

//render the box
glBeginQueryARB (GL_SAMPLES_PASSED_ARB, boxQuery);

{
//render the box

}
glEndQueryARB(GL_SAMPLES_PASSED_ARB);

SDL_GL_SwapBuffers();

Cleanup

Do not forget to clean up and deallocate the occluder queries you used in this sam-
ple. Listing 8.9 demonstrates it.

LISTING 8.9 Occlusion Cleanup

glDeleteQueriesARB(1, &boxQuery);
glDeleteQueriesARB(1, &planeQuery);

CHAPTER EXERCISES

1. The scene graph algorithms outlined in this chapter are a basic approach to
scene graph uses. Feel free to investigate how to optimize the necessary ob-
jects to increase the scene performance.

2. Another technique known as portal rendering exists to help out with a
level containing both indoor and outdoor geometry. Is the portal render-
ing technique efficient for every type of scene or level? Why, or why not?

Scene Geometry Management 181

3. After working with the GL_ARB_occlusion_query extension, list some ad-
vantages and disadvantages you think the algorithm might have. Do you
have any suggestions on how to improve it?

4. Create a small program that will use the occlusion query extension. Create
a way to enable and disable the occlusion query to verify how it affects the
scene’s performance.

SUMMARY

Properly organizing and constructing the geometry involved in your scene can be
a critical factor in determining how fast you are able to render the game world. Sim-
ply relying on the video hardware to do the work for you is not good enough, and
often one or more software organizations are necessary. You have learned about the
OpenGL depth buffer, binary space partition trees, and the octree model of scene
organization. Although there are many other techniques out there for geometry
management, the ones you learned about here are a good selection and starting
point for any graphics programmer.

You also learned some more useful objects from the Peon engine, which allow
you to construct a hierarchical scene graph of your game world that makes it easier
to both perform View Frustum calculations and render the objects in the scene.
One of the primary aspects of a game is the quick feedback you receive when you
use an input device to control your player in the game world. In the next chapter,
you focus on adding most of the graphics components involved in the SuperAs-
teroidArena project.

Graphics Timebox

Chapter Goals

m Add some basic objects to SuperAsteroidArena.
m Implement some textured font rendering to display text.

It is finally time to add some graphics to your SuperAsteroidArena project. If
you recall, in Chapter 5, “Graphics Programming Mathematics,” you started to
create a basic skeleton for the game. At this point, you should have a basic
application window along with some stub TApplicationState instances for manag-
ing the state of the game.

TIMEBOX REQUIREMENTS

Before you can begin work implementing new features in the SuperAsteroidArena
project, you will now create some requirements for this timebox. After you check-
out the design document from the CVS repository, the approach of this timebox is

183

184 Game Programming in C++: Start to Finish

to implement some basic graphics support for the game. A list of requirements you
might consider in a first draft approach is as follows:

Display some text to the player.

Display the asteroids to the player.

Display the player’s ship.

Present the starfield background.

Create some buttons on the main menu for the player.

This is a good requirement list so far and will keep you busy for the majority of
this timebox.

THE LOGOSTATE

Referring to the design document, the purpose of the Logostate is to display your
company logo (or personal name) before the main title screen. This state is optional
and is purely left to your own discretion. This state is currently composed of the fol-
lowing items, which are presented to the player:

® A starfield background

® Black “letterbox” bars on the top and bottom strips of the screen
B A company logo

THE MAINMENUSTATE

From the design document, the basic purpose of the main menu screen s to pro-
vide the player with an entry point for your game. In the previous timebox covered
in Chapter 3, “Introduction to SDL and Windows,” you initially created some stub
state objects, which are acting as placeholders within your game application. In this
timebox, you will now add some meat to these stubs.

The first state you will focus on is the MainMenustate object. This encapsulates
the main menu of your game, which is the first state of the game that accepts player
input. Upon entering this state, the player will be presented with the following:

A starfield background

Some slowly moving asteroids
The main title of the game

A menu of buttons for the player

Graphics Timebox 185

Loading Common Data

For each application state that you have been presented with thus far, there are
quite a few common objects that are shared among each state. For example, it
seems pointless for each state to create its own Skybox object, when you can create
it once and share it among each state. To centralize and simplify working with
some of these common graphics elements, you can create a new object for the
game; the GraphicsResourceManager.

This object will be responsible for acting as a common hub or datastore for
your texture data and other common graphics artifacts. Listing 9.1 details an out-
line of the manager for you.

LISTING 9.1 GraphicsResourceManager.h

namespace arena

{

/**

* This object is a "wrapper" object around the graphics

* objects that we'll need for the game. This way we can

* try to provide some abstraction layer in case we want to alter
* how our graphics are rendering.

2]
class GraphicsResourceManager : public peon::IUnknown
{
protected:
peon: :SceneRenderer* m_pRenderer;
peon: :SceneTexture m_oTextures[ARENA_MAX_TEXTURES];
peon::SceneFont* m_pConsoleFont;
public:
GraphicsResourceManager();
~GraphicsResourceManager();
bool loadManager();
void unloadManager();
peon::Renderer* getRenderer(){ return m_pRenderer; }
peon::Texture* getTexture(int tex){ return &m_oTextures[tex];
}
peon::TextureFont* getConsoleFont(){ return m_pConsoleFont; }
}s

186 Game Programming in C++: Start to Finish

For every object that you want to render to the screen, you will need to load the
respective texture information. In the onLoadWor1d method of this application, you
will load every texture needed for the background, title screen, and the asteroids
themselves. Listing 9.2 demonstrates how this is done within the MainApp: :onLoad-
World method.

LISTING 9.2 bool MainApp: :onLoadWor1ld

bool MainApp::onLoadWorld()

{

//load textures, display lists and font stuff here
//Everything should be done in the GraphicsResourceManager
m_pGraphicsResourceManager = new GraphicsResourceManager();
if(!m_pGraphicsResourceManager->1oadManager())

{

//there was an error
return false;

}

return true;

}

Rendering the Starfield

One of the first steps you will make in this timebox is to render the background
starfield to the game player. Although this is an easy task, it is a good thing to get
out of the way as soon as possible in order to provide you with some feedback that
the game is starting to take shape. The texture information was loaded during the
onLoadWorld method of the mainApp, and the display list for the background was
loaded and compiled as well during this initialization. Listing 9.3 demonstrates
how to render the starfield.

LISTING 9.3 onRender(')

void MainMenuState::onRender()
{
//render the skybox
m_pSkybox->onRender () ;
}

Graphics Timebox 187

Rendering Text to the Player

Adding text support to your game is an important asset and can help provide some
feedback of the game’s current state along with displaying any helpful messages to
the player. You were introduced to the SceneFont object of the Peon library in
Chapter 6, “Creating an OpenGL Renderer.”

Listing 9.4 demonstrates one way to do this within the GraphicsResourceManager.

LISTING 9.4 Loading the SceneFont

//snip

m_pFontTexture = peon::EngineCore::getSingleton().getRenderer()->
loadTexture("data\\textures\\font.png");

m_pFont = peon::EngineCore::getSingleton().getRenderer()->loadFont();

//snip

Creating the Graphical User Interface

Although it is sometimes tackled fairly late in the project schedule, the presentation
of an interface to your player for manipulating game data is an important and often
critical component of any entertainment product. Reflect on any game you have ex-
citedly purchased in the store, only to install it at home and proceed to fight with
the controls in order to enjoy the game to its fullest. The Graphical User Interface
(GUI, pronounced as “Goo-ey”) defines the layout and presentation style of any
components that are used by the player to interface with the game.

Although it is certainly possible to create your own set of GUI tools, it can be
an arduous process for the beginner to tackle. Luckily for you there is a clean library
of GUI objects that allow you to quickly create a mechanism for your player to
interact with the game. In most beginner projects, the GUI system is reduced to a
collection of buttons that allow the player to change the state of the game in a
primitive way. This can even be as simple as providing a main menu that displays a
quit button to exit the game. Depending upon the requirements of the game itself,
this simple system can be sufficient. The Crazy Eddie GUI toolkit (CEGUI) was
created for this very purpose: to allow you to get back to working on your game
content, as opposed to spending time on fiddling with GUI controls. The cross-
platform CEGUI toolkit contains more than enough quality GUI widgets which
allow you to present buttons, text boxes, and list boxes along with a host of other
useful objects.

Game Programming in C++: Start to Finish

Initializing the CEGUI Library

The CEGUI system is meant to be a fast and simple toolkit to incorporate in any
project. As such, there is not much that you need to set up or configure when using
the library. The first step of using the toolkit is to create a renderer object with
which you can present the CEGUI widgets. Listing 9.5 details how this is done.

LISTING 9.5 Initializing CEGUI

//first create a renderer to use. Although the toolkit also supports
//Direct3D, you will need the OpenGL interface.

int width = EngineCore::getSingleton().getRenderer()->getWidth();
int height = EngineCore::getSingleton().getRenderer()->getHeight();
CEGUI: :OpenGLRenderer* renderer = new

CEGUI: :OpenGLRenderer(0,width,height);

//you next initialize the CEGUI::System singleton object by using this
//created renderer.
new CEGUI::System(renderer);

This is all that is needed to set up the CEGUI subsystem. Please inspect more of
the source code of the SuperAsteroidArena project for further details.

THE ACTIVESTATE

After you have finished adding the necessary components for displaying your ob-
jects in the MainMenuState, the game will switch to the Activestate if the player de-
cides to either start a new single-player game or join an existing multiplayer session.
Most of the objects that you need to render have already been created.

TIMEBOX EVALUATION

With the addition of most of the preliminary graphics assets into your game, you
should sit down with your original design documentation and evaluate this time-
box. Make some observations as to whether or not your requirements for this phase
were met. Are you satisfied with the workings of the GUI system so far? Is it legible
and easy to use? Even though-a game like SuperAsteroidArena requires only a few
buttons, are they properly arranged (with necessary spacing, padding, positioning,
and so on)? Are you satisfied with the art assets you are using so far, such as the
background or the player/asteroid textures?

Graphics Timebox 189

If anything needs to be changed or altered, update the documentation and cre-
ate a new timebox to reflect the decision.

CHAPTER EXERCISES

1. Experiment with some different textures for your game thus far. Add a fa-
vorite background or even alter the asteroid texture to either increase or
decrease the level of realism.

2. Work with the different states defined in your game so far to have different
instructions provided for the player depending on the state.

3. Experiment with different font textures to find one that fits your design.

4. Experiment with your GUI design. Is it intuitive? In other words, can the
player simply sit down and “live” your game world without the need of a
readme file or instruction manual?

SUMMARY

You have built an even stronger OpenGL foundation from which to work and have
added some very useful objects to your Peon repertoire. Although the game is still in
its infancy, you were able to add some basic display objects to the SuperAsteroidArena
project. You were also able to add some basic font support to the engine, allowing you
to load and display text using any character font texture. Although you need much
more added to the game, it is exciting to see some results happening before your eyes!

With the graphics foundation already covered, the next chapter focuses on
working with the input devices that are used by the player to interact with your
game.

Working with Input
Devices

Chapter Goals

® Introduce acquiring basic input using SDL.
® Introduce and explain how to process keyboard, mouse, and joystick
events.

will eventually need to provide a way for the player to interact with the game
world. Whether this is through the keyboard, mouse, or joystick input de-
vices, your game must respond to the player in a timely fashion.

3 s you move forward with the creation and evolution of the game engine, you

INTRODUCTION TO INPUT USING SDL

Since the SDL is a cross-platform game programming library, you do not need to
concern yourself with working with any underlying hardware device layer. The
SDL does the grunt work of creating and initializing your input devices, using some
platform-specific code that you do need to worry about.

192

Game Programming in C++: Start to Finish

What is important, however, is how you access the input devices within your
game. Besides being able to view objects within your game world, the next critical
component of your game to the player is how well it responds to input. Months of
hard work on the game can evaporate in seconds if the control response is sluggish
or completely unusable. When the player presses a key or moves the joystick, the re-
sulting action should feel near-instantaneous.

As with a lot of the components of the SDL, you need to respond to specific
event messages that are sent to the event queue when the player performs an input
action. In other words, every time you press a key on the keyboard, a key event mes-
sage is generated within SDL, and it is sent to your main event queue for processing.

Using the Keyboard

When the input subsystem is initialized by the SDL, you need to worry about pro-
cessing keyboard event messages generated by the player. When the player triggers
an event by pressing or releasing a key, an SDL_Event structure is generated and
dumped into the event queue of the main loop. Listing 10.1 provides you with an
idea of what this structure looks like.

LISTING 10.1 SDL_KeyboardEvent Structure

typedef struct

{

Uint8 type; //SDL_KEYDOWN or SDL_KEYUP

Uint8 state; / /SDL_PRESSED or SDL_RELEASED

SDL_keysym keysym; //the data containing the scan code and name
} SDL_KeyboardEvent;

To discover which key was pressed or released, you can dig through the event
message, as done in Listing 10.2.

LISTING 10.2 Digging through the Keyboard SDL_Event

SDL_Event event;
while(SDL_PollEvent(&event))
{
// We are only looking for the SDL_KEYDOWN and SDL_KEYUP events
switch(event.type)
{
case SDL_KEYDOWN:
case SDL_KEYUP:
DisplayKeyInfo(&event.key);
break;

Working with Input Devices 193

default:
break;

}

As you can see, the event queue is waiting to receive the SDL_KEYDOWN or
SDL_KEYUP event messages, which are generated when the player presses or releases
a key. With closer examination of the spL_EVENT reference passed to the Dis-
playKeyInfo function in Listing 10.2, you can easily test which key was pressed or
released. Listing 10.3 has an example of this.

LISTING 10.3 DisplayKeyInfo

void DisplayKeyInfo(SDL_KeyboardEvent *key)
{

// Is it a release or a press?

if(key->type == SDL_KEYUP)

OutputDebugString("Release:- ");
else
OutputDebugString("Press:- ");

// Print the hardware scancode
OutputDebugString("Scancode: 0x%02X", key->keysym.scancode);

// Print the name of the key
OutputDebugString(", Name: %s\n",
SDL_GetKeyName (key->keysym.sym));

}

The scancode of the key event message refers to the hexadecimal value of the key
pressed, which is what you need to use for determining what action the player in-
tends to perform. :

Using the Mouse

Similar to the method you use to process and detect keyboard events, an SDL_Event
structure is also generated for every mouse action. Since you need to respond not
only to mouse movements, but the different mouse buttons as well, processing the
mouse event message is slightly more complicated than the keyboard.

Listing 10.4 and Listing 10.5 document the two SDL_Event structures you need to
handle in the event queue: the SDL_MouseMotionEvent and the SDL_MouseButtonEvent.

194 Game Programming in C++: Start to Finish

LISTING 10.4 SDL_MouseMotionEvent Structure

typedef struct

{ ;
Uint8 type; / / SDL_MOUSEMOTION
Uint8 state; //the current button state of the mouse
Uint16 x, y; //the current x and y coordinates of the mouse

Sint16 xrel, yrel; //the relative motion in x and y direction
} SDL_MouseMotionEvent;

After you have an idea of what kind of data this structure is grabbing from the
mouse, you can query the main event queue for the SDL_MouseButtonEvent message
as well, as shown in Listing 10.5.

LISTING 10.5 SDL_MouseButtonEvent Structure

typedef struct

{
Uint8 type; //SDL_MOUSEBUTTONUP or SDL_MOUSEBUTTONDOWN

Uint8 button; //the button index (left, middle or right button)

Uint8 state; //SDL_PRESSED or SDL_RELEASED

Uint16 x, y; //the coordinates at the time the button was pressed
} SDL_MouseButtonEvent;

The new event queue could appear somewhat similar to Listing 10.2, only you
can now process any events generated by the mouse. An example is shown for you
in Listing 10.6.

LISTING 10.6 Event Queue with SDL_Mouse Support

SDL_Event event;
while(SDL_PollEvent(&event))
{
int x, y;
Uint8 button;
switch(event.type)
{
//The SDL_MOUSEBUTTON message is sent to the queue when SDL
detects
//that you've pressed a mouse button.
case SDL_MOUSEBUTTON:
//do some button action
if(event.button & SDL_BUTTON(1))

{

Working with Input Devices 195

strcat(m_strMouseInfo, " LMB");
telse if (button & SDL_BUTTON(3))
{
strcat(m_strMouseInfo, " RMB");
¥
break;

//The SDL_MOUSEMOTION message is sent to the queue when SDL
detects

//mouse movement

case SDL_MOUSEMOTION:
//do some motion action
// Get the mouse's current X,Y position
SDL_GetMouseState (&x, &y);

sprintf(m_strMouseInfo, "Mouse Position (x,y): (%d, %d)", X,

y);
break;
default:
break;
}
}
Using the Joystick

Listing 10.6 demonstrates how to initialize the joystick subsystem contained with
the SDL. This performs any low-level operating system-specific methods to set up
a way to reference one or more joysticks attached to the computer.

LISTING 10.6 Joystick Subsystem Initialization

if(SDL_Init(SDL_INIT_JOYSTICK) < 0)
{

//return error code

}

Joystick Enumeration

Before you can use the joystick within your application, it is necessary to allow the
joystick subsystem to enumerate (or discover) the available joysticks connected to
the computer.

196 Game Programming in C++: Start to Finish

A useful function available to you is the SDL_NumJoysticks method that queries
the machine for the number of connected joysticks. This is a quick filter you can use
before you bother with any more joystick initialization functions, as shown in List-
ing 10.7.

LISTING 10.7 Using SDL_NumJoysticks

bool joystick_found = true;
int joystick_count = 0;

joystick_count = SDL_NumJoysticks();
if(joystick_count <= 0)
{

joystick_found = false;

return false;

}

Opening a Joystick

Before you can capture any data from the joystick, you first need to properly ini-
tialize it within SDL. A joystick is encapsulated by the sbL_Joystick object and acts
as a container of sorts for the polled joystick data. You use the SbL_Joystickopen
method as demonstrated in Listing 10.8.

LISTING 10.8 Obtaining a Valid SDL_Joystick

SDL_Joystick* pJoy = NULL;
if(joystick_found)
{
pJoy = SDL_JoystickOpen(0);
if(pJoy != NULL)
{
printf("Name: %s\n", SDL_JoystickName(0));
printf("Number of Axes: %d\n", SDL_JoystickNumAxes(joy));
printf("Number of Buttons: %d\n", SDL_JoystickNumButtons(joy));
}

Processing Joystick Events

Working with joystick data is somewhat different from working with input data
received from the keyboard or mouse. Under the SDL, there are two choices for

Working with Input Devices 197

obtaining joystick data: the event queue or polling the joystick directly. To remain
within the event queue paradigm, you will learn how to process joystick events
through the main queue. y

To signal to SDL that you want to use the event queue to handle the joystick
event messages, you need to use the sDL_JoystickEventState method with a para-
meter of SDL_ENABLE. If you were to launch the program now as is, your main event
queue would get flooded with quite a bit of garbage joystick data. You need to set a
minimum threshold that the joystick will respond to. This is known as the joystick
device’s deadzone. See Listing 10.9 for further clarification.

LISTING 10.9 Responding to Joystick Events in the Main Event Queue

//enable the event queue to listen for joystick states generated
/ /by SDL.
SDL_JoystickEventState (SDL_ENABLE);

SDL_Event event;
while(SDL_PollEvent(&event))

{
switch(event.type){

case SDL_JOYSTICKAXISMOTION:
//define some dead-zone for the joystick
if((event.jaxis.value < -3200) || (event.jaxis.value > 3200))

{
if(event.jaxis.axis == 0)
{
// Left-right movement code goes here
}
if(event.jaxis.axis == 1)
{
// Up-Down movement code goes here
}
}
break;

//Handle Joystick Button Presses
case SDL_JOYBUTTONDOWN:
if (event.jbutton.button == 0)
{

/| code goes here. Zap that alien or activate shields.

198 Game Programming in C++: Start to Finish

break;

default:
break;

}

Cleaning up the Joystick

After you have finished with the game and are in the process of freeing up any
allocated resources, do not forget to free the memory used by the sbL_Joystick
object. This can be done with a call to the sbL_JoystickClose method as shown in
Listing 10.10.

LISTING 10.10 Using SDL_JoystickClose

//Cleanup memory for the first joystick only. If more are in
//the system, then loop through them to clean them all up.

if (SDL_JoystickOpened(0))
SDL_JoystickClose(pJoy);

ADDING INPUT SUPPORT TO PEON

Now that you are familiar with working with sbL_Event messages sent with any
input device event, you can add this capability into the Peon engine. For a simpler
approach to processing input, you will modify the 1ApplicationState object that
you have been using in order to add input notification functions. This provides the
most flexibility for users of the engine. Listing 10.11 details the modifications of the
IApplicationState object.

LISTING 10.11 /PeonMain/include/IApplicationState.h

namespace peon

{
class PEONMAIN_API IApplicationState

{
//snip

e R R R R

Working with Input Devices 199

//provide a mechanism to handle key down and key up messages
//note that these methods are not defined as pure-virtual. This
//is to allow the implementation of this state object to only use
//what they need...they may not even need input at all, etc.
virtual void onKeyEvent(SDL_KeyboardEvent *pEvent){};

//the following methods will handle mouse events
virtual void onMouseButton(SDL_MouseEvent* pEvent){};
virtual void onMouseMotion(SDL_MouseEvent* pEvent){};

//snip
b

Then from within the main event loop of the EngineCore object, it is just a mat-
ter of passing the right input event message to the current IApplicationState ob-
ject. These modifications are here for you in Listing 10.12.

LISTING 10.12 Modifications to EngineCore: : runEngine ()

int EngineCore::runEngine()
{
//snip
while(! done)
{
while(SDL_PollEvent(&event))
{

switch (event.type)

{

case SDL_KEYDOWN:
case SDL_KEYUP:
if (m_pApplication)
m_pApplication->getCurrentState()->onKeyEvent(event);
break;
//snip!

200 Game Programming in C++: Start to Finish

You will learn more about implementing these input event messages during the
next timebox of the SuperAsteroidArena project, covered in Chapter 12, “Input and
Sound Timebox.”

CHAPTER EXERCISES

1. Some games allow the player to provide a customized input file for remap-
ping the keyboard. Incorporate the IniconfigReader object into your input
system to allow it to pull desired key mappings from an .INI configuration
file.

2. Centralize the input events into a common structure that you will update
with each input event message. For example, if the player should press the
left arrow on the keyboard, move the mouse left, or move the joystick left,
then your input structure should just signal that a left motion was detected.
This allows the player to use the device of his preference.

3. Instead of responding to events in the SDL message queue, compare your
application performance and/or feedback with polling the input devices di-
rectly every update cycle of your game. Are there situations in which one
method is preferred over the other?

SUMMARY

Using the features of the SDL, you were shown how to create and access the stan-
dard input devices found on most PCs today: the keyboard, mouse, and joystick.
You were also given more experience in using the SDL event queue to process event
messages generated from these input devices. Input handling within a game is an
important facet to incorporating the player into your game world. If your input re-
sponse is slow or sluggish, especially in an action game, then it can almost ruin the
game experience for any player.

One of the other core components of a video game is the audio feedback gen-
erated for the player depending upon the action in the game. In the next chapter,
you will learn how to use and manipulate your sound hardware to add more meat
to your game.

Working With Sound

Chapter Goals

m Discuss sound properties.

Introduce the layers of sound involved in a game.
Introduce the SDL_Mixer library.

Introduce 3D positional sound using OpenAL.
Introduce how to play both WAV and Ogg-Vorbis files.

ronment for a game is one of the most critical aspects involved in present-

ing the overall package to the player. The right balance of audio cues within
your game can create an incredible experience that can really draw the player into
the game world.

3 lthough mostly overlooked until the later stages of a project, the audio envi-

SOUND MECHANICS

Sound is a wave emitted from a source that travels through some kind of medium,
which is usually air or water. You can hear sound in your everyday environments
here on Earth, as the medium the sound waves travel through involves air mole-
cules. However, contrary to most science fiction movies, explosions or laser fire

201

202

Game Programming in C++: Start to Finish

cannot be heard in space as there are no air molecules for the sound waves to travel
through, hence no sound effect.

For sound programming purposes, there are two characteristics to describe
sound waves: '

Amplitude: If you were to look at your sound wave figure, the amplitude is
the measure of the height of the sound wave from the base to the crest.

Frequency: This attribute defines the number of cycles per second that the
sound wave pulses. This is also known as the pitch of a sound and is measured
in Hz (hertz).

DIGITIZED SOUND

When you record or store an audio effect into a digitized form, you are telling the
computer to record the amplitude of the sound. How often the amplitude is
recorded is known as the sampling rate.

For example, CD-quality audio has a sampling frequency rate of 44,000 Hz,
which means that the computer makes 44,000 measurements per second of the
sound source. Taking fewer measurements per second will shrink the size of the re-
sulting data file but will diminish the quality of the sample since the computer is
taking less measurements of the sound effect.

SOUND LAYERS

Within a high-performance game situation you can have multiple layers of sound
that help draw the player into the game world. For most games you work with ap-
proximately four layers: background, environment, effects, and speech. The back-
ground layer is simply the music that conveys an overall atmosphere of the game to
the player. For instance, in a haunted house environment the background layer
might simply contain some ghostly, haunting music to help chill the player.

The environment layer mostly describes audio effects that contribute to the lo-
cale of the game. In the same haunted house, for example, environment effects can
be things like creaking floors, mysterious doors opening and closing, chains drag-
ging on the floor, and perhaps an occasional ghostly wail.

Effects is another sound layer that most games use; these sounds are from the
character or surrounding environment itself. This is mostly sound effects heard

Working With Sound 203

from player actions, such as using an item from the player’s inventory, direct ma-
nipulation of objects within the game world, and so on. For example, as the player
moves through the haunted house, he is breathing quickly with each freaky sound.
Every footstep produces creaks and groans in the floorboards of the old house.
With each old door, we hear squeaks and squeals of the door handle turning and
then opening on its rusty hinges.

A final sound layer that most developers use in their games is speech. Most
often speech is delivered during plot advancing moments of the game such as a cut
scene of some kind, or is used to flesh out the characters around the player. To con-
tinue the haunted mansion example, the speech layer could be the voiceover of
the player himself who is reading a will from his long lost uncle, which has a decree
that the player must stay in his house for one night to inherit the extensive family
fortune.

There are probably many more sound layers you could define on your own, but
for the most part these are the most common.

INTRODUCTION TO SDL_MIXER

As you discovered in Chapter 10, “Working with Input Devices,” on using the SDL
for input device management, the benefit of using the library is felt immediately
since you do not need to concern yourself with any low-level input device manip-
ulation. For audio purposes, there exists a helpful SDL component called
sDL_Mixer, which encapsulates any low-level system specific audio device tasks.
With spL_Mixer you can play two broad types of audio datafiles: music data and
digitized sound effects data.

WORKING WITH AUDIO MUSIC DATA

Although the spL_wixer library supports a wide variety of music data that you can
load into your programs, here you focus only on probably the two most popular
formats for game music: MIDI and Ogg-Vorbis.

Musical Instrument Device Interface (MIDI) is a format/language that de-
scribes musical compositions as a function of time. Instead of working with digital
samples, a MIDI composition is described as a collection of instruments, keys, and
some special codes. Each channel in the MIDI specification is also responsible for
a different instrument. For example, you might have 16 channels available, each

204

Game Programming in C++: Start to Finish

one representing a different instrument, such as a piano, drums, guitar, flute, trum-
pet, saxophone, and so on. The actual playback of a MIDI composition is left to the
hardware, which means that depending upon the kind of audio hardware installed,
the tune might sound different on one machine than the other. Although the MIDI
format can contain only synthesized music, the actual file size for this format is very
small, which is why it was so popular for a time.

Ogg Vorbis is an audio compression scheme comparable to other formats such
as MPEG-3, with the exception that Ogg Vorbis is completely open source, un-
patented, and license-free. For a lot of commercial and independent game projects,
itis replacing the MPEG-3 format, which requires rather expensive royalty fees. For
proof of this, you can find a lot of the recent AAA titles have some of their audio
data stored in Ogg-Vorbis format, such as Unreal Tournament 2004, Jedi Knight II,
and a host of others. For working with music data, Listing 11.1 demonstrates how
to initialize the sDL_Mixer library taken from the /chapter_11/BasicMidi sample
project.

LISTING 11.1 Initializing SDL_Mixer Subsystem

int audio_rate = 22050; //a 22050 Hz frequency rate
Uint16 audio_format = AUDIO_S16; // 16-bit stereo

int audio_channels 2; //specify 2 audio channels

int audio_buffers 4096; //desired buffer size for output

n

//Initialize the SDL subsystem
SDL_Init(SDL_INIT_EVERYTHING);

//This is where we create a handle to the audio device.
/IMix_OpenAudio takes as its parameters the desired audio format
if(Mix_OpenAudio(audio_rate, //frequency

audio_format, //audio format

audio_channels, //2 for stereo, 1 for mono

audio_buffers)) //bytes used per output sample
{

OutputDebugString("Unable to open audio!\n");

return false;

}

//query the audio layer to see what we really ended up with.
//We can throw these values into a log file to help debugging.
Mix_QuerySpec(&audio_rate, &audio_format, &audio_channels);

From Listing 11.1, you can immediately see what kind of information you will
need in order to initialize the sDL_Mixer audio subsystem.

Working With Sound 205

First, you need to decide on an audio format you want to provide for your
game. As you can see, you are using an audio rate of 22,050 kHz, 16-bit stereo with
two channels.

In the sample, you are using the Mix_OpenAudio function to initialize and create
your main audio format.

Proceeding with Listing 11.2, you learn how to load some music data and then
play it.

LISTING 11.2 Using Mix_Music

Mix_Music *pMusic = NULL;

/| Actually loads up the music
pMusic = Mix_LoadMUS("data\\media\\archive.mid");

//snip
//further on in our event queue we can enable or disable the sound
//when you hit the 'm' key
while(!done)
{
while(SDL_PollEvent(&event))
{
switch(event.type)
{
case SDL_QUIT:
done = 1;
break;

case SDL_KEYDOWN:
case SDL_KEYUP:
switch(event.key.keysym.sym)
{
case SDLK_m:
//if the 'm' key is detected being pushed down
if (key.state == SDL_PRESSED)

{
Mix_PlayMusic(pMusic, //our Mix_Music structure
0)3 //0 to play once, -1 for infinite loop
}
break;
}
}

206

Game Programming in C++: Start to Finish

You need to use the Mix_music data structure to store the audio data loaded
during the Mix_LoadMus function. For the purposes of demonstration, the music
data is only started by the ‘m’ key and simply plays a single time. Should you want
to use this audio data for your background music in a game you will probably want
it to infinitely loop.

Cleaning Up

After you are finished with your music data, to avoid any memory leaks, you need
to properly clean everything up. Listing 11.3 details the necessary steps to clean up
the Mix_Music structure and the underlying spL_Mixer interfaces.

LISTING 11.3 Cleaning up Mix_Music

Mix_HaltMusic();

/1 Unload the music from memory
Mix_FreeMusic(pMusic);

pMusic = NULL;

//close and destroy the SDL_Mixer interfaces
Mix_CloseAudio();

You have now learned how to load, play, and clean up audio music data and
can confidently use it in any SDL application.

Working with Audio Sound Effects Data

e

The other kind of audio data most often used during gameplay is sound effects
data.
After the audio hardware is created and initialized, you then need to create and

, load the sound effects data as shown in Listing 11.5, which is taken from the /chap-

ovmeco ter_11/BasicWAV project.

LISTING 11.5 Loading Sound Effects

/IMix_Chunk is used like Mix_Music only for short sound effects

Mix_Chunk *pExplosion = NULL;

//Every sound that gets played is assigned to a channel. This
assignment

//is the specific information about a sample that is playing. It is

/Inot the same as the number of channels specified during audio
device

Working With Sound 207

//creation. (ie. 2 for stereo, 1 for mono, etc)
int sound_channel = -1;
pExplosion = Mix_LoadWAV ("explosion.wav");
if (!pExplosion)
{
//the sound data failed to load properly
return false;

Sound Effect Playback

Now that you have loaded your sound effects, you need to learn how to use
sDL_Mixer to play them back. You will take advantage of the mix_PlayChannel func-
tion to send the sound effect data to the audio hardware. An spbL_Mixer channel is
used to store information about a sound sample that is playing and should not be
confused with the number of channels you requested when you originally created
the audio subsystem with the Mix_OpenAudio function. Listing 11.6 demonstrates
how you can do this.

LISTING 11.6 Using Mix_PlayChannel

while(!done)
{
while(SDL_PollEvent (&event))
{
switch(event.type)
{
case SDL_QUIT:
done = 1;
break;

case SDL_KEYDOWN:
case SDL_KEYUP:
switch(event.key.keysym.sym)
{
case SDLK_s:
if (key.state == SDL_PRESSED)
{ 3
sound_channel = Mix_PlayChannel(
-1, //the channel we should play on. -1 for don't care
pExplosion, //the Mix_Chunk data
-1); //the number of times sound should be looped.

208

Game Programming in C++: Start to Finish

break;

Cleaning Up

As with the music audio data, you need to free up any memory resources allocated
for the Mix_chunk sound effect data structure. This is done with the help of the
Mix_HaltChannel method, which takes the sample channel as the only argument,
shown in Listing 11.7.

LISTING 11.7 Mix_Chunk Cleanup

Mix_HaltChannel(sound_channel);
Mix_FreeChunk(pExplosion);
sound_channel = -1;

INTRODUCTION TO OPENAL

You have learned much about creating and playing some background music and
sound effects for your game. However, at the beginning of this chapter it was men-
tioned that a possible sound layer within a game is that of environmental sound.
Normally, most games will play a looping music track in the background, which
provides some ambient environment or atmosphere. Other times, you might want
to play sound effects from different locations in your game world. To accomplish
this, you need to be introduced to a high-quality audio API called Open Audio
Library (OpenAL), which makes it simple to position and play a sound within 3D
space. This gives you the chance to play a sound more loudly as the player approaches
it, and to make it quieter as the player moves farther away. OpenAL was created and
designed to be a cross-platform, high-performance audio library and purposefully
meant to seamlessly integrate with OpenGL with the design of its function format
and usage.
There are four important components to work with in OpenAL:

® The Audio Library Context is a high-level object that represents the sound de-
vice capable of functioning across multiple platforms such as Windows, Linux,
or MacOS.

W The source object represents some properties around the position in space from
which the sound emits.

Working With Sound 209

m The listener object represents the audio properties of the position in space from
which you want to hear the sound. In most cases, this is the player’s position in
your game world.

® The audio buffer represents some properties on how to play the sound, along
with the actual sound data itself.

Intializing the OpenAL Device Context

Before you can begin to play any sounds, you must first initialize your OpenAL
context. This simply creates a link between your application and the local audio
., hardware installed on your machine. Listing 11.8 demonstrates how this is done

~—— and is taken from the /chapter_11/BasicSoundOpenAL project on the CD-ROM.

LISTING 11.8 OpenAL initialization

ALCcontext *pContext;
ALCdevice *pDevice;

//open a link to the audio hardware using the DirectSound3D
/ /underlay

pDevice = alcOpenDevice((ALubyte*)"DirectSoundSD");
if(pDevice == NULL)

{

return false;

}

//Create a valid context
pContext=alcCreateContext(pDevice,NULL);

//make it the current active contekt
alcMakeContextCurrent (pContext);

Loading Sound Effects

The next step in using the OpenAL device is to load up any sound effect or musical
data you want to use in your scene. You need to create an OpenAL buffer, which is
responsible for containing your audio data that you then attach to either a source
or listener object within the game world. The only data format a buffer object will
support is Pulse Code Modulation (PCM) data stored in the WAV format, which is
a native audio format on Windows. Listing 11.9 demonstrates how to load some
audio data into an OpenAL buffer.

210 Game Programming in C++: Start to Finish

LISTING 11.9 Loading WAV Data into a Buffer

char* alWAVBuffer; //data for the buffer

ALenum alFormatBuffer; //for the buffer format

ALsizei alFreqBuffer; //for the frequency of the buffer
long alBufferLen; //the bit depth

ALboolean allLoop; //looped

unsigned int alBuffer;

//load the wave file
alutLoadWAVFile(strWaveFile.c_str(),//WAV filename

&alFormatBuffer, //0penAL format specifier

(void **) &alWAVBuffer, //size of the WAV file in bytes
(unsigned int *)&alBufferLen, //bit depth of WAV..16 or 32
&alFreqBuffer, //frequency of the WAV file
&loop); //1looping indicator for data

//create a buffer..similar to glGenTexture
alGenBuffers(1, &alBuffer);

//fill the buffer with the audio data loaded
alBufferData(alBuffer, //buffer handle

alFormatBuffer, //format type of the data
alWAvBuffer, //handle to audio data
alBufferLen, //size of audio data in bytes
alFreqgBuffer); //frequency of audio data

positionBuffer(alBuffer);

//release the data
alutUnloadWAV (alFormatBuffer, alwAvBuffer, alBufferLen,
alFreqBuffer);

Similarly to the process of texture image loading under OpenGL, after you
have finished working with the raw data and have loaded it into your context, you
must free the associated data loaded into memory.

Working with the Source Object

One of the fundamental aspects of working with OpenAL in your game world is the
use of positional sound. When you have a valid buffer loaded with data, you will

Working With Sound ~ 211

need to attach it to a source object within your scene. The advantage of using
OpenAL is that you can have the sound move in conjunction with the associative
object itself, giving you a very realistic scene. Perhaps you have a monster moving
through your level or maybe some water dripping from the walls of your dungeon.
Positioning these sounds can really create some fantastic environments that your
player will remember.

Since OpenAL is designed for smooth integration with OpenGL, when you work
with the location coordinates of your source or listener objects, you are using a
WoTE right-handed coordinate system.

Listing 11.10 demonstrates how to set up and configure an OpenAL source
object.

LISTING 11.10 Positioning the Source

unsigned int alSource; //source object handle

// Bind buffer with a source.
alGenSources(1, &alSource);

//if there's an error caught by the system, then exit
if(alGetError() != AL_NO_ERROR)
return AL_FALSE;

//some default coordinate positions. Initialize to the origin
//of the world for now

float vecPos[] { 0.0f, 0.0f, 0.0f };

float vecVell] { 0.0f, 0.0f, 0.0f);

//attach the source object with the WAV data in the buffer
alSourcei (alSource, AL_BUFFER, alBuffer);

//control the pitch of the data
alSourcef (alSource, AL_PITCH, 1.0f)3

//Gain helps you define a scalar amplitude multiplier
alSourcef (alSource, AL_GAIN, 1.0f)

//specify the source position
alSourcefv(alSource, AL_POSITION, vecPos) ;

212

Game Programming in C++: Start to Finish

/Ispecify the source velocity
alSourcefv(alSource, AL_VELOCITY, vecVel);

//1loop the data once you hit the end? Default is false
alSourcei(alSource, AL_LOOPING, AL_FALSE);

As you can see, there are tweak several properties that you can tweak to prop-
erly position your sound source. With the AL_BUFFER flag you are specifying which
OpenAL buffer you want to attach to this source. There are two positional flags,
AL_VELOCITY and AL_POSITION, that you should understand the difference between.
The AL_POSITION specifies the position of the sound in world coordinates. The
AL_VELOCTIY parameter, on the other hand, specifies the current speed and velocity
of the sound source. The velocity does not affect your source position, and OpenAL
will not update a new velocity position based upon an updated position. The Ope-
nAL driver will use the velocity information when calculating the Doppler effect on
your audio source.

Positioning the Listener Object

Similarly to the source object, the listener object encapsulates and represents an
object capable of hearing the sound in the game world. With OpenAL you only
have one listener, which takes advantage of most of the same properties as the
source object.

Listing 11.11 provides an example of configuring your listener.

LISTING 11.11 Positioning Your Listener

float listenerx, listenery, listenerz;
float vecOrient[6];

//pick an arbitrary listener location. Normally this might
/Irepresent the location of your player in the game world as
/1he or she runs through the forests or the Deadmines.
listenerx=10.0f;

listenery=0.0f;

listenerz=5.0f;

vecOrient[0] = fvecx; //forward vector x value

vecOrient[1] = fvecy; //forward vector y value
vecOrient[2] = fvecz; //forward vector z value
vecOrient[3] = uvecx; //up vector x value
vecOrient[4] = uvecy; //up vector y value
vecOrient[5] = uvecz; //up vector z value

Working With Sound 213

//set current listener position
allListener3f (AL_POSITION, listenerx, listenery, listenerz);

//set current listener orientation, which represents the forward and
//up vectors of your view matrix
allListenerfv(AL_ORIENTATION, vecOrient);

Asyou can see, the AL_ORIENTATION can represent the up and forward vec-
tors taken from your scene’s view matrix.
Playing the Sound

The buffer has been loaded, the source and listener objects have been positioned,
and so the OpenAL context is ready to play the sound. Using the AL_LOOPING para-
meter of your source object you can also specify the context if you want the sound
to loop after it has finished playing. Listing 11.12 shows how to play the sound.

//tell the sound to loop continuously
//AL_TRUE for yes, AL_FALSE for no
alSourcei(alSource,AL_LOOPING,AL_TRUE);

//play the sound
alSourcePlay(alSource);

Stopping the Sound

Listing 11.13 demonstrates how to stop a sound source that is currently playing.

LISTING 11.13 Stop the Sound

//To stop the sound:
alSourceStop(alSource);

Shutting Down the OpenAL Context

All things must come to an end, and OpenAL is no exception. During the unload-
ing of your game you will need to clean up any audio buffers, source objects, and
your OpenAL context and device link. Listing 11.14 provides an example for per-
forming this garbage collection of your OpenAL environment.

214 Game Programming in C++: Start to Finish

LISTING 11.14 OpenAL Cleanup

//delete our source
alDeleteSources(1,&alSource);

//delete our buffer
alDeleteBuffers(1,&alBuffer);

//Get active context
pContext=achetCurrentContext();

//Get device for active context
pDevice=achetContextsDevice(pContext);

//Disable context
alcMakeContextCurrent (NULL);

/ /Release context(s)
achestroyContext(pContext);

//Close device
alcCloseDevice(pDevice);

alutExit();

PLAYING OGG-VORBIS DATA WITH OPENAL

(< Although the default wav format supported by OpenAL provides a lot of flexibility

ML in terms of working with simple sound effects to fully fledged musical scores, there
may be cases in which the overall size of your game is under a very tight control.
Although you learned how to load and use Ogg-Vorbis files with spL_mixer, there
might eventually be a need to use OpenAL to play your Ogg-Vorbis data. Listing
11.15 demonstrates how to load your data into an OpenAL buffer and is taken
from the /chapter_11/BasicoggopenAL sample.

LISTING 11.15 Loading Ogg-Vorbis Data into a Buffer

#include <ogg/ogg.h>
#include <vorbis/codec.h>
#include <vorbis/vorbisenc.h>

Working With Sound 215

#include <vorbis/vorbisfile.h>
#define BUFFER_SIZE 32768 //32 KB buffer

//snip

FILE* oggFile; // file handle
OggVorbis_File oggStream; /| stream handle
vorbis_info* vorbisInfo; /| some formatting data
vorbis_comment* vorbisComment; // user comments

int result;

char vorbis_data[BUFFER_SIZE];

//physically open the file
if(!(oggFile = fopen(path.c_str(), *rb").))
return false;

//Open the OggVorbis_File using the existing FILE pointer
if ((result = ov_open(oggFile, &oggStream, NULL, 0)) < 0)
{

fclose(oggFile);
return false;

vorbisInfo = ov_info(&oggStream, -1);

vorbisComment = ov_comment(&oggStream, -1);

//if you only want one channel, then make sure we're working in MONO
//format

if(vorbisInfo->channels == 1)
format = AL_FORMAT_MONO16;
else

format = AL_FORMAT_STERE016;

// The frequency of the sampling rate
freq = vorbisInfo->rate;

long bytes = 0;
int endian = 0; // O for Little-Endian, 1 for Big-Endian
if (SDL_BYTEORDER == SDL_BIG_ENDIAN)
{
endian = 1;
}
do

216 Game Programming in C++: Start to Finish

/1 Read up to a buffer's worth of decoded sound data
bytes = ov_read(&oggFile, vorbis_data, BUFFER_SIZE, endian,
2, 1, &oggStream);
/1 Append to end of buffer
buffer.insert(buffer.end(), array, array + bytes);
} while (bytes > 0);

ov_clear(&oggFile);

There is a little more work involved to load Ogg-Vorbis data, but thankfully the
0gg-Vorbis objects and methods take care of most of the work for you. After open-
ing the audio data file, the application determines the underlying Endian format to
use. OpenAL will then proceed to load the audio data into the Ogg buffer.

Playing the Ogg Buffer

Now that the sound is loaded into an OpenAL buffer, you can manipulate and play
it back in the same way that you are accustomed to with the WAV file. Listing
11.16 demonstrates how to do this.

LISTING 11.16 Playing the Ogg Buffer

//tell the sound to loop continuously
//AL_TRUE for yes, AL _FALSE for no
alSourcei(alSource,AL_LOOPING,AL_TRUE);

//play the sound
alSourcePlay(alSource);

The cleanup and garbage collection of the buffer is identical to how you re-
moved the OpenAL buffer in Listing 11.14.

CHAPTER EXERCISES

1. Check the OpenAL documentation to learn more parameters that you can
use for your source and listener objects. .

2. Manipulate your listener to move around the world in response to the key-
board. Provided you set the parameters properly, you should be able to
move around the sound and hear it change depending upon where you are
in relation to it and your distance from the sound.

Working With Sound 217

3. You have the option of playing sound effect WAV data in either OpenAL
or SDL_Mixer. Take some time to experiment with each one to determine
whether there is a situation in which one API is better than the other.

SUMMARY

This chapter accomplished the task of introducing you to the sbL_Mixer library that
enables you to play and enjoy audio resources within your game, without worrying
about any low-level code to manipulate the audio hardware. You learned how to
load and play both MIDI and Ogg-Vorbis audio data, as well as learning how to
load and play sound effect files stored in the WAV format. You also learned about
using the OpenAL API, which allows you to position and play sound effects in 3D
space. With the stengths of both libraries at your fingertips, playing background
music while adding explosion and laser sound effects is no problem and will only
add more depth and fun to any game you create! In the next chapter, you focus on
adding both input and sound to the SuperAsteroidArena game.

I 2 ; Input and Sound Timebox

Chapter Goals

m Incorporate the input objects into your game engine.
® Incorporate the audio objects into your game engine.
® Add input and sound support to SuperAsteroidArena.

message was received, you can combine the SDL_Mixer and OpenAL li-

Now that you have had an introduction to using SDL to detect which input
braries to handle your audio feedback.

TIMEBOX REQUIREMENTS

Once again, it is time to checkout your design document for the SuperAsteroidArena
project to work with a list of requirements for this timebox. The goal of this timebox
is to update the player to respond to keyboard input. This entails moving the player
in the game world, along with playing any additional audio feedback to accompany
the player’s actions. You can create a list of requirements similar to the following:

219

220

NOTE

Game Programming in C++: Start to Finish

Add the ability to process input into the game.

Add the ability to load and play audio resources in the game.

Add audio resources to most of the game states that exist already.

When the player moves the input device, the player’s ship should respond
accordingly.

As you can see, these requirements will add a whole new depth and feel to the
game so far. Hopefully, it is becoming easier to see why the Agile method is used
often, as it provides you with quick results and continuous feedback to maintain
your excitement level in the project.

If you are not actually seeing anything for the first few days or weeks of a game pro-
Ject, then the game itself unfortunately has a higher chance of not being completed.
Although it can be healthy to sometimes take a few days off from the project to pro-
vide you with a mental break, do not take too long.

REQUIRED INPUT EVENTS

Before implementing any code for processing input events received from the event
queue, you should work with a preliminary list of actions that the player will
want/need to perform during the execution of the game.

In the case of the SuperAsteroidArena game, you can create a list of actions af-
fected by the player’s input:

Rotate the ship (left or right).

Enable/disable the ship’s main engines (that is, thrust).
Enable/disable the sound effects.

Enable/disable the background music.

To make this happen in the game project, you need to override the events gen-
erated by the 1Applicationstate interface. By responding to the different input
controls, you can best manipulate the player’s ship around the game world.

Listing 12.1 provides some more details on adding support for these keys in the
game.

Input and Sound Timebox 221

LISTING 12.1 Adding Key Event Support

//Within the ActiveState.h definition
class ActiveState : public IApplicationState

{
//snip
//override the onKeyEvent message to help process incoming
//input commands
void onKeyEvent(SDL_KeyboardEvent* pEvent);

b

Now that you have provided definitions for the input methods that you are able
to override, you can implement them within the Activestate.cpp module. The
basic algorithm used is to detect which key was pressed and then invoke the ap-
propriate response in your code.

Rotating the Player’s Ship

One of the input actions you have in the design document is to rotate the player’s
ship left or right, depending upon which direction key/input is received. To prop-
erly rotate the player’s ship, you will need to manipulate the object’s rotation
around the z-axis. Listing 12.2 describes how to add some code to help rotate the
player’s orientation.

LISTING 12.2 Player Rotation

void ActiveState::onKeyEvent(SDL_KeyboardEvent* pEvent)
{

switch(pEvent->keysym.sym)
{
case SDL_LEFT:
//rotate the ship to the left
m_oOurPlayer.vecRot.z += (m_oOurPlayer.fTurningRate *
-1.0f * fTimeKey);
break;
case SDL_RIGHT:
//rotate the ship to the right
m_oOurPlayer.vecRot.z += (m_oOurPlayer.fTurningRate *
1.0f * fTimeKey);

222

Game Programming in C++: Start to Finish

break;
}s

After you compile and run the game, you should now have the ability to rotate

the ship left and right using the arrow keys on your keyboard.

Activating the Player’s Engines

According to the design document, the player must also be able to activate some
thrust engines in order to move forward. Listing 12.3 details how to add some for-
ward motion to your player’s ship in the game world.

LISTING 12.3 Adding Forward Movement

void ActiveState::onKeyDown(SDL_KeyboardEvent* pEvent)
{

switch (PEvent->keysym.sym)

{

case SDK_LEFT:

//snip

break;

case SDK_RIGHT:

//snip

break;

case SDK_UP:

/lapply forward movement to the player

float velocity = 0.05f * fTimeKey;

/1first grab our rotation, and convert it from
//degrees into radians

float fX = PEON_DEGTORAD(m_oOurPlayer.vecRot.z);

//now update the player's position based upon the
//sin and cos values of the rotation (in radians)
m_oOurPlayer.vecVel.x += velocity * cosf(fX);
m_oOurPlayer.vecVel.y += velocity * sinf(fX);

break;
b
}

Input and Sound Timebox 223

USING THE AUDIOENGINE

Another important component of the Peon library created during the EngineCore
initialization process is the AudioEngine subsystem. This object attempts to encap-
sulate both the SDL_Mixer and OpenAL toolkits you learned about in the preced-
ing chapter. Listing 12.4 provides a detailed look at the AudioEngine component.

LISTING 12.4 AudioEngine

namespace peon

{

/**

* This structure is responsible for encapsulating a 3D sound
* within our game world. It should be fairly generic enough
* to handle most situations

*/

struct PEONMAIN_API AudioNode

{

/** the source buffer */

ALuint sound_source;

/** the actual sound buffer */

int sound_buffer;

/** loop the sound? */

bool sound_loop;

/** sound's position in 3D space */

ALfloat sound_position[3];

/** sound's velocity within the game world */

ALfloat sound_velocity[3];

};

/**

* This object is our interface to the audio device detected
* on the machine. This should give us an easy mechanism to
* load and playback audio data.

*/

class PEONMAIN_API AudioEngine : public ISingleton<AudioEngine>
{

public:

/** Constructor */

AudioEngine();

/** Destructor */

224 Game Programming in C++: Start to Finish

~AudioEngine();

/** snip. Standard ISingleton overrides. snip. */

/**

* This method makes the necessary calls to load up a

* Mix_Music instance which is used for playback of

* MIDI files

* @param strFilename - path to the MIDI file

* @return Mix_Music* - pointer to our Mix_Music object
£

Mix_Music* loadMIDI(const String& strFilename);

/**

* This method makes the necessary calls to load up a

* Mix_Chunk instance which is used for playback of

* MIDI files

* @param strFilename - path to the WAV file

* @return Mix_Music* - pointer to our Mix_Chunk object
%]

Mix_Chunk* loadWAVChunk(corist String& strFilename) -

/**

* This method internally loads the audio resource

* into some OpenAL compatible buffers. When you wish

* to work with a resource, you need to reference it by

* the slot you stored it in.

* @param strFilename - path to WAV file

* @param slot - slot to store resource

* @return bool - true if sound loaded properly

*i

bool loadAudioNode(const String& strWAVFile, AudioNode* pNode);

b
}

Loading Sounds

To demonstrate how easy and flexible the AudioEngine component is, you can now
load and play some sound and music files within your project. Listing 12.5 details
the sound data you are going to load for some sound effects within SuperAs-
teroidArena.

Input and Sound Timebox 225

LISTING 12.5 Loading Sounds

bool MainApp::onLoadWorld()
{

//snip the other code

//defined as peon::AudioNode m_oAudioNodes[MAX_AUDIO_SAMPLES]
peon::AudioEngine: :getSingleton().loadAudioNode (
"data\\media\\laser.wav",

&m_oAudioNodes([0]);

//load the rest of the audio data the same way
return true;

}

Playing Sounds

Now that the audio data is available to use in memory, you can play it at your
leisure within any state of the game. Listing 12.6 details how this is done.

LISTING 12.6 Playing Audio

//if the laser sound is loaded into AudioNode slot 0, you need
//to "set" the sound within the AudioEngine
peon: :AudioEngine: :getSingleton().setAudioNode(&m_oAudioNodes[0]);

//Now it is okay to play the audio node!
peon: :AudioEngine::getSingleton().playAudioNode(&m_oAudioNodes[0]);

Unloading Sounds

As with the other objects created during the runtime of the game, you will need to
ensure that the AudioNode objects are cleaned up. Listing 12.7 details how to prop-
erly unload the AudioNode objects created during this application.

LISTING 12.7 Unloading Sounds

void MainApp::onUnloadWorld()

(4

//clean up the audio node objects
for(int i = 0; i < AUDIO_MAX_SOUNDS; i++)
{

226

Game Programming in C++: Start to Finish

//just use the AudioEngine object of the peon library to unload any
//audio data
peon::AudioEngine::getSingleton().unloadAudioNode(&m_oAudioNodes[i]
);
}
}

TIMEBOX EVALUATION

Now that you have added some input and audio mechanisms to your game in this
timebox, evaluate what you have accomplished so far in this phase. Does your pro-
ject meet or exceed your input and audio requirements? Are you dissatisfied with
any of your audio music or effects? After some play testing, do you need to alter the
input configuration, or are your key mappings sensible for the player?

If you decide to alter any of the game design, remember to keep your design
document updated and create a new timebox with these different requirements.

CHAPTER EXERCISES

1. Create some different sound effects for your own project. Experiment with
starting and stopping different audio files depending upon the state of your
game, along with different sound effects depending upon what action is
occurring.

SUMMARY

Although not very long, this chapter helped you visualize what is needed for load-
ing and playing audio data, along with adding input support to your game. Feel free
to spend some time going through the code along with the material from this chap-
ter. The project is really starting to take shape now, so you should feel proud at your
accomplishments so far!

One of the primary goals of most games today is the destruction of other ob-
jects or players within the game world. Processing, if one object has struck another,
forms the core of what is known as collision detection, which you learn more about
in the next chapter.

I 3 5 Collision Detection and
Physics Techniques

Chapter Goals

® Explore simple collision detection.

Introduce bounding box collision detection.

Experiment with bounding cube/sphere collision detection.
Introduce ray collision detection.

Introduce implementing the Tokamak physics library in your
application.

the game experience is having proper collision detection. Collision detec-

tion is the art and science of determining whether one object has hit
another. This is a crucial aspect of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>